H1 Highlights for ICHEP2004

Vladimir Chekelian (MPI for Physics, Munich)

48 papers submitted to ICHEP2004 (results of the last 2 years)

DESY, 10 August 2004

V. Chekelian, H1 Highlights 2004

1

New Results: for the First Time at Major Conference

The first HERA II results

- Polarised CC cross section
- Update for the high P_T phenomena
 - general search
 - isolated leptons
 - multi-leptons

Searches

- for bosonic stop decays in Rp viol. SUSY
- for events with tau leptons
- for Doubly Charged Higgs Bosons
- for Lepton Flavour Violation

Low Q^2 and low x

- F_2 at low Q^2 using ISR events
- Forward jets at low x in DIS

Beauty

- Beauty in DIS from b->µx
- Beauty in γp using lifetime tagging
- F_2^{bb} , F_2^{cc} at high Q^2

Diffraction

- Diffractive dijets: DIS vs. γp
- Diffractive CC
- Diffractive D* in DIS

Hadron production

- Anti-deuteron production
- A narrow anti-charmed baryon state

DESY, 10 August 2004

New Results: for the First Time at Major Conference

The first HERA II results

- Polarised CC cross section
- Update for the high P_T phenomena
 - general search
 - isolated leptons
 - multi-leptons

Searches

- for bosonic stop decays in Rp viol. SUSY
- for events with tau leptons
- for Doubly Charged Higgs Bosons
- for Lepton Flavour Violation

Low Q^2 and low x

- F_2 at low Q^2 using ISR events
- Forward jets at low x in DIS

Beauty

- Beauty in DIS from b->μx
- Beauty in γp using lifetime tagging
- F_2^{bb} , F_2^{cc} at high Q^2

Diffraction

- Diffractive dijets: DIS vs. γp
- Diffractive CC
- Diffractive D* in DIS

Hadron production

- Anti-deuteron production
- A narrow anti-charmed baryon state

Polarised NC and CC at HERA II

Polarised e⁺p CC cross sections at HERA II

General Search for Deviations from SM at high P_T

consider all final states with isolated $e_{\mu,j,\gamma,\nu}$ (P_T>20 GeV, 10° < ϑ < 140°)

impressive overall agreement with the Standard Model predictions

DESY, 10 August 2004

Isolated leptons with P_T^{miss} at HERA II

	HERA I (118 pb ⁻¹)			HERA II (45 pb ⁻¹)	
	e	μ	τ (prel)	e (prel)	μ (prel)
All P _T ^X	11/11.54	8/2.94		7/3.86	1/1.16
$P_T^X > 25 \text{ GeV}$	5/1.76	6/1.68		3/0.84	0/0.82

DESY, 10 August 2004

30 40

 P_T^{χ} (GeV) e and μ channels

50

60

70

80

20

10

10⁻¹

10⁻²

Isolated leptons with P_T^{miss} at HERA II

	HERA I (118 pb ⁻¹)			HERA I+II (163 pb ⁻¹)	
	e	μ	τ (prel)	e (prel)	μ (prel)
All P _T ^X	11/11.54	8/2.94		18/15.4	9/4.1
$P_{T}^{X} > 25 \text{ GeV}$	5/1.76	6/1.68		8/2.6	6/2.5

DESY, 10 August 2004

 P_T^{χ} (GeV) e and μ channels

10⁻²

Isolated τ events with missing P_T

Elastic τ -pair production -> demonstration of the detection ability

Isolated τ and missing P_{T}

	HERA I (118 pb ⁻¹)			HERA I+II (163 pb ⁻¹)	
	e	μ	τ (prel)	e (prel)	μ (prel)
All P_T^X	11/11.54	8/2.94	5/5.81	18/15.4	9/4.1
$P_T^X > 25 \text{ GeV}$	5/1.76	6/1.68	0/0.53	8/2.6	6/2.5

Rp viol. SUSY: Search for Bosonic Stop Decays

Multi-leptons at HERA I+II (163 pb⁻¹)

2 central leptons 20° $9 < 150^{\circ}$, $P_{T}^{11,12}$ >10,5 GeV 2 or 3 leptons in the finale state

Selection	Data	SM
ee $M_{12} > 100 \text{ GeV}$	3	0.44 ± 0.10
$\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	0	0.04 ± 0.02
e μ $M_{e\mu}$ $> 100~{\rm GeV}$	0	0.31 ± 0.03
eee $M_{12} > 100 \text{ GeV}$	3	0.31 ± 0.08
$e\mu\mu M_{e\mu} > 100 \text{ GeV}$	1	0.04 ± 0.01
$e\mu\mu M_{\mu\mu} > 100 \text{ GeV}$	1	0.02 ± 0.01

Search for Doubly Charged Higgs

DESY, 10 August 2004

Search for Lepton Flavour Violation

DESY, 10 August 2004

Beauty in DIS (and γp) from b-> μX

DESY, 10 August 2004

Inclusive Lifetime Tagging

Beauty in γp using lifetime tagging $Q^2 \sim 0$ dijets with $p_t^{jet} > 11$ (7) GeV and -0.88< $\eta^{jet} < 1.3$

- Data are slightly above NLO, similar to $b \rightarrow \mu X$ results
- The difference tends to be larger for $x_{y}^{obs} < 0.85$ (resolved)
- Similar conclusions for Cascade (CCFM)

F₂^{bb}, F₂^{cc} at high Q² using lifetime tagging

DESY, 10 August 2004

Diffractive Final States and NLO QCD (tests of QCD factorisation in diffraction) diffractive NLO PDFs from F2^D data -> predictions for final states

- Diffractive **D*** in DIS
- Diffractive dijets (DIS, γp)
- Diffractive CC

Diffractive D* in DIS

DESY, 10 August 2004

Comparison with 2-gluon approach ($x_{IP} < 0.01$)

NLO QCD for Diffractive Dijets in DIS and γp

NLO is about 2 times higher γp data -> breaking of factorisation in γp for dijets in ppar: ~7 times higher

DESY, 10 August 2004

"Rapidity Gap Survival Probability" in yp

Data/NLO: DIS & γp H1 Diffractive Dijets (prel.) 1.6 Data/NLO data bin correl. uncert. 1.4 H1 2002 fit (prel.) 1.2 DIS 0.8 0.6 0.4 DIS NLO 0.5<µ/E_T<2 0.2 -0.2 W=242 GeV W=165 GeV -0.4 0.45 0.5 0.55 0.6 3 n 4 0.65 ٧

Double ratio $\frac{\text{data/NLO (\gamma p)}}{\text{data/NLO (DIS)}} = 0.5 \pm 0.1$

-> no y (energy) dependence

Diffractive e⁺p CC cross section

Summary

Many new results for ICHEP2004:

- analysis of HERA I data is still going on, although in some areas the data now are essentially exploited
- the first physics results from HERA II polarised CC, new interesting events at high $P_{T,...}$
- many completely original and new topics double signitures, new techniques, ...

Many thanks to HERA machine group and all H1 colleagues who worked hard to get these results out