Evidence for exotic baryon decaying to K_s^o - (anti)proton

S.Chekanov (ANL)

for the ZEUS Collaboration

DESY seminar, Nov 25, 2003

+

1

Motivation

- Significant interest in baryon spectroscopy triggered by recent observations of possible pentaquark at 1530 MeV and width <15 MeV, predicted by D.Diakonov, V.Petrov and M. Polyakov;
- In this study, we attempt to find such a state by reconstructing K⁰-(anti)proton invariant mass;
- We use the ZEUS central tracking region, where the particle production is dominated by fragmentation.

Event selection

121 pb⁻¹, 1996-2000, e⁺p, e⁻p collisions, CM energy of 300-318 GeV;
Q²>1 GeV².

K⁰_s selection

- CTD tracks, p_T>150 MeV, -1.75 < η < 1.75;
- K⁰_s reconstructed from secondary-vertex tracks;
- Photon conversions removed: $M(e^+e^-) < 50 \text{ MeV}$;
- Λ 's removed $M(\pi p) < 1.121$ GeV;
- p_T(K⁰)>300 MeV;
- |η (K⁰)| < 1.5.</p>

Resolution for M (K_{s}^{0} -(anti)proton) masses ~ 5 ± 2 MeV

K⁰_s mass peak

Double Gaussian + linear background for the fit 869690 ±1016 candidates

3222 background (0.37%)

Peak at: 498.12 ± 0.01 (stat) MeV

Shift by +0.8 MeV from the PDG value

Proton and antiproton selection

Only primary tracks are taken with: f< dE/dX <F

- found from a visual examination of dE/dX
- \bullet verified using a sample with reconstructed Λ
- (anti)protons from ARIADNE have a similar band

Proton and antiproton selection

Most protons are concentrated in the region p ~ 0.8-2 GeV:

Large pion background

Reject tracks with p>1.3 GeV inside the dE/dX band;

- Assign pion mass to proton candidate, reconstruct $K^0\pi$ mass, rejects pions from K^* : 800 < M($K^0\pi$) < 980 MeV;
- E(proton)>E(K⁰);

• P_{T} >0.5 GeV in the Breit frame to look at gluon-rich DIS region;

Possible reflections from known resonances

- Plenty of weakly decaying resonances cannot be reflected to narrow peaks;
- Narrow decays from charmed/bottom mesons cannot give reflections due to their large masses;
- MC contains reflections from known decays or possible misreconstruction.

ZEUS preliminary results

Fit: Gaussian + P3 (free parameters)

Combined sample: 372±75 candidates peak=1527±2(stat) MeV, W=10 ±2(stat) MeV

ZEUS preliminary results

Fit: Gaussian + P3 (free parameters)

ZEUS Combinations / 0.005 GeV K⁰_S p 350 300 250 200 ZEUS (prel.) 96-00 150 Signal 100 Background ARIADNE MC (scaled) 50 1.45 1.5 1.55 1.6 1.65 M(GeV)

Σ(1480) bump?

K°-antiprotons: 126±50 candidates peak=1529±3(stat) MeV, W=7±3 MeV(stat) Σ(1480) bump?

K°-protons: 393±86 candidates peak=1523±3(stat) MeV, W=16 ±3(stat) MeV

Systematic study

- Several systematic checks were performed:
 - Momentum cut varied within 1.1-1.7 GeV;
 - Q^2 raised to 20 GeV²;
 - ✓ K^{*} cut removed;
 - ✓ P_{τ} in Breit frame removed (decreases the signals by ~0.8 σ);
 - ✓ Fit done with Breit-Wigner (instead of Gaussian) + different order polynomials.

Peak position found to be robust

- Most convincing check: combine K^o with tracks from region dE/dX<1.2 and p<0.9 GeV, where all particles except for (anti)protons can contribute to mass spectra:
 - NO 1527 MeV PEAK!

Summary

• A signal at 1527±2(stat.) MeV, with a Gaussian width of 10±2 MeV:

- \checkmark ~ 4-5 σ statistical significance (from Gaussian fit);
- exists for both K^o-protons and K^o-antiproton channels (antipentaguark);
- consistent with the predicted pentaquark (1530 MeV, <15 MeV width);
- ✓ Possible systematic shift for the peak is within ~ 1 MeV (from K_s^0 , Λ and K* measurements), but full systematics need to be estimated.
- First measurement in HEP colliding experiment.

