Muon Cooling and the Muon Collider A. Caldwell MPI f. Physik/Columbia University

- Motivation
- Difficulties
- Focus on Cooling (frictional cooling)

Why a Muon Collider ?

No synchrotron radiation problem (cf electron)

P a (E/m)⁴

Can build a high energy circular accelerator.

Collide point particles rather than complex objects

Some Difficulties

• Muons decay, so are not readily available – need multi MW source. Large starting cost.

• Muons decay, so time available for cooling, bunching, acceleration is very limited. Need to develop new techniques, technologies.

• Large experimental backgrounds from muon decays (for a collider). Not the usual clean electron collider environment.

• High energy colliders with high muon flux will face critical limitation from neutrino induced radiation.

Dimensions of Some Colliders discussed

Physics at a Muon Collider

Muon Collider Complex:

- Proton Driver 2-16GeV; 1-4MW leading to 10²²p/year
- *π* production target & Strong Field Capture
- COOLING resultant μ beam
- µ acceleration
- Storage & collisions

- Stopped µ physics
- ν physics From target, stored μ
- Higgs Factory $\sigma_{\mu\mu\rightarrow H} = 40000 \sigma_{ee\rightarrow H}$
- Higher Energy Frontier

HIGH ENERGY MUON COLLIDER PARAMETERS

Baseline parameters for high energy muon colliders. From "Status of Muon Collider Research and Development and Future Plans," Muon Collider Collaboration, C. M. Ankenbrandt *et al.*, *Phys. Rev. ST Accel. Beams* **2**, 081001 (1999).

COM energy (TeV)	0.4	3.0
<i>p</i> energy (GeV)	16	16
<i>p</i> 's/bunch	2.5×10^{13}	2.5×10^{13}
Bunches/fill	4	4
Rep. rate (Hz)	15	15
<i>p</i> power (MW)	4	4
µ/ bunch	2×10^{12}	2×10^{12}
μ power (MW)	4	28
Wall power (MW)	120	204
Collider circum. (m)	1000	6000
Ave bending field (T)	4.7	5.2
rms δ <i>p/p</i> (%)	0.14	0.16
$6D \varepsilon_{6,N} (\pi m)^3$	1.7×10^{-10}	1.7×10^{-10}
rms $\epsilon_n (\pi \text{ mm mrad})$	50	50
β^{*} (cm)	2.6	0.3
σ_{z} (cm)	2.6	0.3
σ _r spot (μm)	2.6	3.2
$\sigma_{\theta}^{}$ IP (mrad)	1.0	1.1
Tune shift	0.044	0.044
n _{turns} (effective)	700	785

π 's in red μ 's in green

Simplified emittance estimate:

At end of drift, rms x,y,z approx 0.05,0.05,10 m P_x , P_y , P_z approx 50,50,100 MeV/c

Normalized 6D emittance is product divided by $(m_{\mu}c)^3 \epsilon^{drift}_{6D,N} \approx 1.7 \ 10^{-4} \ (\pi m)^3$

Emittance needed for Muon Collider

 $\epsilon^{\text{collider}}_{6D,N} \approx 1.7 \ 10^{-10} (\pi m)^3$

This reduction of 6 orders of magnitude must be done with reasonable efficiency !

Muon Cooling

Muon Cooling is the signature challenge of a Muon Collider

Cooler beams would allow fewer muons for a given luminosity, thereby

- Reducing the experimental background
- Reducing the radiation from muon decays
- Reducing the radiation from neutrino interactions
- Allowing for smaller apertures in machine elements, and so driving the cost down

Cooling Ideas

Ionization cooling (Skrinsky, Neuffer, Palmer, ...): muons are maintained at ca. 200 MeV. Transverse cooling of order x20 seems feasible (see v-factory feasibility studies 1-2). Longitudinal cooling not solved.

'Balbekov Ring'

There are significant developments in achieving 6D phase space via ionization cooling (R. Palmer, MUTAC03), but still far from 10⁶ cooling factor.

at the Rutherford Appleton Laboratory

KEK – focus on FFAG acceleration

0.5-MeV Proton FFAG

,

150-MeV Proton FFAG Under construction at KEK

Frictional Cooling

Studies at Columbia University/Nevis Labs Allen Caldwell, Raphael Galea + Stefan Schlenstedt (DESY/Zeuthen) Halina Abramowicz (Tel Aviv University)

Summer Students: Emily Alden Christos Georgiou Daniel Greenwald Laura Newburgh Yujin Ning Inna Shpiro Will Serber

Frictional Cooling

 \bullet

Frictional Cooling: particle trajectory

** Using continuous energy loss

Frictional Cooling: stop the **m**

- \bullet High energy μ 's travel a long distance to stop
- High energy μ 's take a long time to stop

Plots for 1. 10⁻⁴ g/cm³ He

Detailed Simulation

Full MARS target simulation, optimized for low energy muon yield: 2 GeV protons on Cu with proton beam transverse to solenoids (capture low energy pion cloud).

20

Target System

bean.

• cool μ^+ & μ^- at the same time

 calculated new symmetric magnet with gap for target

Target & Drift Optimize yield

- \bullet Optimize drift length for μ yield
- Some π 's lost in Magnet aperture

Phase Rotation

 First attempt simple form
 Vary t₁,t₂ & E_{max} for maximum low energy yield

Cooling cell simulation

He gas is used for μ^+ , H₂ for μ^- .

Individual nuclear scatters are simulated – crucial in determining final phase space, survival probability.
Incorporate scattering cross sections into the cooling program
Include µ⁻ capture cross section using calculations of Cobon

Cohen (Phys. Rev. A. Vol 62 022512-1)

•Electronic energy loss treated as continuous

Scattering Cross Sections

Nuclear Energy Loss 50 dE/dx (MeV/g/cm²) 0 45 O Table - scaled to muon mass 40 Program - µ n •Scan impact parameter Program $-\mu^+$ 35 and calculate $\theta(b)$, $d\sigma/d\theta$ 0 from which one can get 30 $\lambda_{mean free path}$ α 25 •Use screened Coulomb 0 Potential (Everhart et. al. Phys. Rev. 99 20 C Simulate all scatters 15 $\theta > 0.05$ rad 10 •Simulation accurately reproduces ICRU tables 5

2000 200 400 600 1800 0 800 1000 1200 1400 1600 T(eV)

(1955) 1287)

26

Barkas Effect

•Difference in μ^+ & μ^- energy loss rates at dE/dx peak

•Due to charge exchange for μ^+

•parameterized data from Agnello et. al. (Phys. Rev. Lett. 74 (1995) 371)

•Only used for the electronic part of dE/dx

Trajectories in detailed simulation

Final stages of muon trajectory in gas cell

After the gas cell

Yields & Emittance

Look at muons coming out of 11m cooling cell region after initial reacceleration.

Yield: approx 0.002μ per 2GeV proton after cooling cell. Need to improve yield by factor 3 or more.

Emittance: rms x = 0.015 m y = 0.036 m z = 30 m (actually β ct) $P_x = 0.18 \text{ MeV}$ $P_y = 0.18 \text{ MeV}$ $P_z = 4.0 \text{ MeV}$

$$\varepsilon_{6D,N} = 5.7 \ 10^{-11} \ (\pi m)^3$$
 31

Problems/Things to investigate...

- Extraction of μs through window in gas cell
 Must be very thin to pass low energy μs
 Must be reasonably gas tight
- Can we apply high electric fields in gas cell without breakdown (large number of free electrons, ions) ? Plasma generation \rightarrow screening of field.
- Reacceleration & bunch compression for injection into storage ring

• The μ^- capture cross section depends very sensitively on kinetic energy & falls off sharply for kinetic energies greater than e⁻ binding energy. NO DATA – simulations use theoretical calculation

• +...

First try to demonstrate frictional cooling with protons.

RARAF Facility – Nevis Lab/Columbia University

VandeGraaf accelerator for biomedical research

Initial conclusions: no obvious cooling peak, but very low acceptance due to lack of magnetic field. Use data to tune simulations. Redo experiment with a solenoidal magnetic field.

Future Plans

- Frictional cooling tests at MPI with 5T Solenoid, alpha source
- Study gas breakdown in high E,B fields
- R&D on thin windows
- Beam tests with muons to measure μ capture cross section

 μ +He \rightarrow He_{μ}+ e+ γ 's

muon initially captured in large n orbit, then cascades down to n=1. Transition n= $2\rightarrow$ n=1 releases few KeV x-ray.

Si drift detector Developed my MPI HLL

Conclusions

- Muon Collider complex would be a boon for physics
- We need to solve the muon cooling problem
- Different schemes should be investigated
- We are doing some simulation and experimental studies of frictional cooling. So far, so good, but a long way to go !