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e DIS — & ( forward Compton amplitude)
2 parton distributions (PDs)

o Deeply Virtual Compton Scattering (DVCS)
=t generalized parton distributions (GPDs)
e Physical interpretation of GPDs for £ = 0 and ¢ # 0

as Fourier transforms of impact parameter depen-

dent PDs.



Motivation:

X.Ji, PRL 78, 610 (1997):

—

DVCS] & |GPDs|] & |,

— GPDs are interesting physical observable!

But do GPDs have a simple physical interpretation?



Deep-inelastic scattering (DIS)

DIS — (im. part of) forward Compton amplitude

Bjj .
S parton distributions
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No information on L position of partons!



Deeply virtual Compton Scattering
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probe for generalized parton distributions:
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parton interpretation:

“amplitude that parton with long. momentum (z —
£/2)p" is taken out of a nucleon with long momentum
(1 — &/2)p* and inserted back into the nucleon with
long. momentum transfer AT = £p™ and L. momentum
transfer A I

compare: conventional PDF's, where parton is inserted
back into nucleon without momentum transfer!



w'|C

e resemble both form factors and parton distributions:

e involve same operator that is used to calculate con-
ventional PDFs, except p’ # p

o 1 dzH(z,&,t) = Fi(t)

e £ =0,t=0 (no momentum transfer)

—  H,(x,0,0) = q(x)

e GPDs allow to determine how much quarks with
momentum fraction 2 contribute to form factor.

e Definition of GPDs resembles that of form factors

> H(z, &A% a(p" )y ulp)+E(z, & A%)u(p)
with O = J dg—;em_ﬁxq (-%) v q (%)

e relation between PDs and GPDs similar to relation
between a ‘charge’ and a ‘form factor’

2M

e [f form factors can be interpreted as Fourier trans-
forms of charge distributions in position space, what
is the analogous physical interpretation for GPDs 7

icTVA,

u(p)



In general, GPDs probe
]‘ /
+ E(z, &, tyu(p)ic ™ qu(p))

with £ = L.

This talk, focus on unpolarized target & & = 0, where
F(x,0,t) = H(x,0,t) = H(x,1)



today’s talk:

interpretation of GPDs for £ =0 but AL = 0:

will show below that H(z, & =0,t) and H(z, £ =0,1)
have simple physical interpretation as

Fourier transfrom of impact parameter de-
pendent PDs w.r.t. the impact parameter,
i.e.

g(xa 07 _Aaj = dzbJ_Q(xa bJ_)e_iALbJ_
H(x,0,—A%) =1d*b  Aq(z, b )e ALbL

— measuring H(z,{ = 0,¢) and H (x,£=0,1) allows
determining ¢(z,b,) and Ag(z,b,) !



Impact Parameter Dependent PDF:

e define state that is localized in L position

Vi) = p",RL=01) =N [d’p1 p*,p1)
(using light-cone wave functions, one can show that
this state has R} = 5;z;by ; =0))

e For such localized state define impact parameter
dependent PDF

33 bL /7 ¢loc|¢< BPNE bL) +¢<— bL) ‘¢loc> izp*

(compare. working in CM frame in nonrel. physics)

e use transl. invariance to relate to same matrix ele-
ment that appears in def. of GPDs

<¢loc| ¢<_a;_7 bJ_>7+¢<a:2_7 bJ_) ‘¢loc>
= INT? P P, (P (=" By (b b

_ .z T
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— q(z, b, ) is Fourier transform of H(x,0, —A).

d’A -
(@ by) = [ 5 5 H@ —Al)e™ ™




e one can show that g(x, b ) has physical interpreta-
tion of a density, i.e.

qg(z,by) >0 for z >0
g(z,b) <0 for z <0




interpretation of ¢(z,b ) as density:
e quark bilinear in twist-2 GPD can be expressed in
terms of light-cone ‘good” component ¢4y = %y‘yﬂb
Py = V20 e
e expand 14 in terms of canonical raising and low-
ering operators
dk™ ’k .
V(e x1) = ) Akt /d %
X |ug(k, s)bs(kT k1 e Z’fuv( (K, s)di (kT k) )e'*

with usual (canonical) equal light-cone time ™+ anti-
commutation relations, e.g.

{bp(k*, K1), bl (qh qu)} = 0(k"— q)o(k . — qu)ds
and the normalization of the spinors is such that

Uy (0, )Y Uy (D, 8) = 207 0y

e Using for example @4 (p/, ")y w1 (p, §) = 2y/pTpT brs,
one finds for x > 0

2k/
Q<x7 bL) — Nl %:/d L/d wloc‘ bT(ZCp ’ )b (xp 7kL) |77bloc>

'LbJ_'(li_—kJ_) ]

Xe

e Fourier transform to L position space

. d’k
bs(kT,x,) = [ 2;

bs(k+, kJ_)e_ikJ‘-XJ-
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Overlap Representation for GPDS at £ =0: !

express GPDs for &€ = 0 as overlap integrals between
LF wave functions (Fock space amplitudes) Wy (x,k, )
(exact if one knows the Wy for all Fock components )

H(z,0,-A2) = > ? [1da]y [|d°k.] O(w—z,) Wy (w:, K )W (i, k)

[ li_,Z = kJ_,Z' — .IZ'AJ_ for ¢ #] and kIJ_,j = kJ_,j + (1 - .Tj)AJ_]

Example:
H(z,A,) for the 7

H(z,Ay) =[dkiyp (z,k + Ao, (2,k))
+ /d2kld2lldy¢2l (SU, kL + AJ_7 Y, kL)ZpOL (.f, kJ_7 Y, lJ_)

IM.Diehl et al., NPB 596, 33 (2001); Same as form factor in Drell-Yan frame in terms of LF wave
functions, except that x of ‘active’ quark is not integrated over.



compare nonrelativistic (NR) form factor

e 2-body system:
F(q) = | d*ky(k + qog(k)
e 3-body system:
F(Q) = | d*kid*ky ks + G, Ko) gk, o)

Note: like GPDs, F(q) also off-diagonal in momentum
(Pm 7é Pout)

use: NR boosts purely kinematic

I;ZZ = EZ + xli

— simple boost properties of NR wave functions, e.g.
Vil) = vk — o)
wa(kl, k2) = ¢6(k1 — 11q, by — 72q)
to rewrite F/(q) as autocorrelation of wf forP = 0
2-body system:
F(q) = [ d*k g3k + (1 — 2)@) (k)
3-body system:
F(§) = [ d*kydky (ks +(1—21)q, ka— ) g(Fr, ko)



2. Fourler transform to position space to transform au-
tocorrelation function into density, i.e. to express
F'(q) in terms of the charge density

F(q) = [ d*re™p(),
where

p(7) = charge distribution measured from the
center of mass Roy = %; 7/7;



relevance for GPDs

e purely transverse boosts in LF frame form Galilean
subgroup

xr;, —> XI;
k, , — ki +xzAL
where momentum fraction x; plays role of mass frac-
tion %7 in NR case

— LF Fock space amplitudes transform under purely
| boosts very similar to the way NR wave functions
transform

¢AL<x7kL> — ¢0L(x7kJ__:UAJ_)
¢AL(x7kL7y7lL> — ’QDOL(xakL — iUAJ_,y,lJ_ — yAL>

— can represent H(z, A, ) as autocorrelation of Fock
space amplitudes in p; = 0, frame

— Fourier transform (the L coordinates) to position
space, yielding (compare F'(§) < p(7) in NR QM)

H(z,A,) = [d*b e Pg(z, b))

where

q(x, b, ) = |probability density to find quark with momentum
fraction x at L distance b, from the L center of
momentum REM =%, Tl .




e formal def. for ¢(x,b ) (in LF gauge):
dx~ | oz (T
q (_27bL) g (2, bL)

iptxTx
/ A € <wloc
where [¢,.) = rd*p19(p1) |p) is a wave packet of
plane wave proton states which is very localized in
the L direction, but still has a sharp P total L
momentum!) is at the origin.

Q<x7 bL) — 7vbloc>

e other gauges: inserts straight line gauge string from
(=% b1) to(5, by)

— manifestly gauge invariant!



Discussion:

1. H(x,—A?%) tells us (via Fourier trafo) how partons
are distributed in the transverse plane as a function
of the distance from the L center of momentum.

2. similar interpretation exists for H(x, —A?).

3. b, distribution is measured w.r.t. R(jM =%, Tl )
— width of the b | distribution should go to zero as
x — 1, since the active quark becomes the _L center
of momentum in that limit!
— H(x,t) should become t-independent as x — 1.

4. q(x, b ) has probablilistic interpretation:

C_I(QZ, bJ.) ~ <¢loc bT (33p+, bJ_)b(xp+7 bL)‘ 7ﬁbloc>
— ‘b($p+, bL)‘wloc>‘2 )

where b(zp*, b, ) creates quarks of long. momen-
tum xp™ at L position b .
— positivity constraint

0<q(z,by)=[d*A L H,(x,0,—A%)e21PL

for x > 0 and negative for x < 0.

5. Use intuition about nucleon structure in position
space to make predictions for GPDs:



large x: quarks expected to come from localized va-
lence ‘core’,

small x also contributions larger * meson cloud’

— expect a gradual increase of the t-dependence of
H(x,0,t) as one goes from larger to smaller values
of x

. commonly used ansatz for ¢ dependence (motivated
by LF constituent models with Gaussian wf):

H(z,0,—A%) = g(z)e *ALF
(b ) ~1

i
inconsistent with space time descriptions of parton

structure @ small x (Gribov)

1
b %) ~aln—
<J_> OéIlaj

— LF const. model with Gaussian wf no good @
small x.

. Better ansatz:

H(ZC, O, —AQL) — q(gj)e_O‘Ai ln% or q(x)e—aAi(l—x) ln%

(2" ansatz also consistent with Drell-Yan-West).



Form factors <+ (Fourier trafo of) charge dis-
tributions

o fixed target: EM form factor — Fourier trafo of
charge distribution

e ‘moving’ target
— separate center of mass motion (nonrelativistic!)

— form localized wave packet
< (uncertainty principle) relativistic corrections

relevant scale: A\g ~ ﬁ



e wave packet

ﬁ)
o b=+ M 2 + p? and covariant normalization (p'|p) =
2E5(p" — p)

e charge distribution in the wave packet

Fol@) = [ o™ (] p(Z) |0)

3

= | g+ 0¥ 1)1

= S IV G DY)

e Nonrelativistic case:

Eﬁ—i— Eﬁ/ B
2/EzEy
¢ =—q
— charge distribution in the wave packet

Fu(@) = [ EpV*(F+ V(D) F(T)

— choose V(p) very localized in position space

V(i 3) ~ V()
> R(@)=F(@




e Relativistic corrections (example rms radius):

Fo(q") = 1—}2261—}%2/0l3 U(p)|° <Qﬁ)

2 (7 )’
EL

(R? defined as usual: Fi(¢*) =1+ %q2 + O(q"))

+ [dp|q- Wﬁ)\ ——/dgpl‘lfﬁ)\

If one localizes the wave packet, i.e.
L= 2
[d’p\q-VI(H)| — 0,

then relativistic corrections diverge (AzAp ~ 1)

R? 2 (7 P)°

(32

\
4

— OQ

—/Ol3 ()’

e in rest frame, wave packet + rel. corrections con-

tribute at least AR? ~ M4 = %

identification of charge distribution in rest frame
with Fourier transformed form factor only unique
down to scale A¢

° inﬁnite momentum frame: rel. corrections governed
by &4 and

consider wave packet W(p') in transverse direction,
with



— sharp longitudinal momentum P, — o0

— transverse size of wave packet r |, with
R>r.> 4

take momentum transfer purely transverse

= Fu(dL) = F(q?)

— form factor can be interpreted as Fourier trans-
form of charge distribution w.r.t. impact parameter
in oo momentum frame (without A\¢ uncertainties!)



GPDs for £ =0

e consider wave packet in L (z — y) direction (P,

fixed)
p ﬁ)

/¢2 D),

e define (usual) parton distribution in this wave packet
as function of impact parameter b

- dx~ I e N
A Q(_27bl_)fy Q(QabL)

folw,b1)= [ <
e in the following: show that (for localized W) Fourier
trafo of fy(z,b) w.rt. by yields H(xz,& =0,t).

e (0 )

Fo(z,q1)= | d22q LeT L fy(z, B )
d*p V(P )V (D) dr” ey g T T =
=/ [= €™ {p'la(——-01)q(~
PE2Ey A 2
d*p, V(' )V (p) >
=/ f(@,6=0,q7).

PREREy

where p, = p, and ', =p1. + ¢

e nonrelativistic case (¢* = —¢* and Ez = Ey = m)
—  H(x,£ =0,—¢) not dependent on p
— take out of integral
Furthermore, if size of U(p7) in L position space is



1
2M

d’p | U (P (F))

2E;2

taken to zero then s
C%

2\

. 1
Fo(z,qL) — mH(%f =0,—q")

dependence on wave packet disappears if very local-
ized!

—  H(x,& =0, —¢?) has interpretation as Fourier
transform of impact parameter dependent parton
distribution w.r.t. impact parameter

e relativistic case (rest frame):
same interpretation, but resolution in b, of order

Ac



e relativistic case (co momentum frame):

d*p V* (P )V (pL) )
H(z.€=0.%).
L, (2,£=0,q%)

infinite momentum frame (again wave packet with
r1 such that (p% Lr, < R)

fq;(él?,(jl) — /

— ¢ =—-q and Es=FEy=p,

H(z,6 =0,—q"
2. (%, § =0,-q")

< In 0o momentum frame no relativistic corrections
to nalve interpretation

Conclusion: Since Fourier trafo? of b -dependent PDF

for target that is localized in L direction agrees with
GPD for &£ =0, we can identify

H(z,0,—A%) = rd?,q(x, Ii)e_@f‘i
H(z,0, —&i) = 1 d*b Ag(, gﬁe_iblm

— measuring H(z,{ = 0,¢) and H (x,£=0,1) allows
determining ¢(z,b,) and Ag(z,b,) |

2Fourier trafo with respect to b 1



QCD-evolution:

so far ignored QCD evolution! However, can be easily
included

o For t < %, leading order evolution t-independent

e For ¢ = 0 evolution kernel for GPDs same as DGLAP
evolution kernel

likewise:

e impact parameter dependent PDF's evolve such that
different b, do not mix (as long as L spatial resolu-
tion much smaller than Q?)

— above results consistent with QCD evolution:

H(z,0,~&%,Q%) = (&b, q(r, b, Qe "5
H(z,0,—A%, Q?) = 1d%, Aq(z, by, Q%)e "5

where QCD evolution of H, H q,Aq is descrlbed by
DGLAP and is independent on both b | and A



extrapolating to £ =0

e bad news: & = 0 not directly accessible in DVCS
since long. momentum transfer necessary
to convert virtual ~ into real =y

e good news: moments of GPDs have simple ¢&-
dependence (polynomials in &)
— should be possible to extrapolate!

even moments of H(z,¢,t):

n—1

Hy(&,t) = [\doa"Hz,&,t) = Lio]An,zz(t)s% Ot
= Ano(t) + Apo(t)E + ..+ A o(1)E" 2+ C(t)E,
1.e. for example
[fdraH (z,€,t) = Agg(t) + Cal(t)E2. (1)

e For n'® moment, need 541 measurements of H,,(&,t)

for same ¢ but different € to determine A, 9;(1).
e H,(&£ =0,t) obtained from
H,(£=0,t) = A,o(t)

e similar prodecure exists for moments of H



models:

most models for parton structure of hadrons also
make predictions about distribution of partonsin L
plane

e pion-cloud model for nucleon (qualitative):

model: nonperturbative (low Q%) sea quarks described
by m-cloud surrounding a ‘bare’ nucleon.

— Consequences for parton structure:

— large x (valence quarks; from ‘bare’ nucleon) par-
tons very localized in position space

— small x (sea quarks; from 7 cloud) delocalized in
position space

— more localization in b for increasing x
< less t dependence in H(x,0,t) for increasing x

e phenomenological LF-wave functions with Gaussian
ansatz for k | -dependence
N kiﬂ-

=1 I

Uy (zi, k) o< exp

Insert into overlap integral for H(z,£ =0,t) ... =

a’l —

H(x,t) = q(x)exp t

X



€_>

T 1 =x

b,)= — b*
Q(xa L) Q(x)2ﬂ_a2(1 . CU) eXp 2021 — 1 1L
very localized (in b, ) for z — 1!
too large (L size ~ 1) for z — 0
e NJL-model (for H(x,t) in the pion)
3g2A% (1 — x)? 1
H(z,0,t)=1— J L<2 z) /Oldoz S
8 (M2 + A3 (1 — 2)%a(l — )]
1
M2 A2+ AY(1 - 2)a(l - a)
A? -

(M2 + A2+ A2(1—2)%a(l —a)?

Depends on A only through A (1 — z) = (as ex-
pected!) A, dependence disappears as © — 1.




The Physics of F(z,0,t)

So far: only unpolarized (or longitudinally) polarized
nucleon.

For polarized nucleons, use ( AT = 0)

dx~ .
¢ P07 )| P1) = H(x,0,-A%)
dz™ A,—1A
zp T - . _ Y A2

— GPD for nucleon polarized in the x direction (in the IMF) reads

FQ($7 07 —Ai) — H(JE, 07 _Ai) + ZQA—]\ZE(LL’, 07 —Ai)
— (unpolarized) parton distribution in the L plane for
a nucleon that is polarized in the x direction given

by
d’A | . b,
q@:(z,by) =/ (2)? H(z,—A*) —HﬁE(x,—Aﬁ) e PLAL
— 2LF(r,0,—A?) describes how the momen-

tum distribution of unpolarized partons in

the | plane depends on the polarization of

the nucleon.

A

e positivity constraint for FT of E(z,0,1):

V’M a d’b e AL E(3,0,—A%) < [d*b e AL H(2,0,—A%)



3. physical interpretation of Ji’s angular mo-
mentum sum rule

(J,) = ;/dazaz H,(2,0,0) + E,(x,0,0)]

Physics: GPDs (for € = 0) allow the simultaneous de-
termination of the momentum of partons in the z di-
rection and their position in the L direction (compare
angular momentum L, = yp, — zp,)

— not surprising to find GPDs & J,.



consider nucleons polarized in the x-direction (in rest
frame — include Melosh rotation!)

F(z,0,A)) = H(z,0,—A7)

A
+ Zﬁ H(z,0,—A%) + E(z,0, - A7)

Take

e First moment w.r.t. x (to get p,

e derivative w.r.t. A, (to get y)

€_>

(7)) = & [ dae [H,(2,0,0) + E,(x,0,0)



Figure 1: Comparison of a) a non-rotating sphere that moves in  direction with b) sphere
that spins at the same time around the z axis and c) sphere that spins around the z axis
When the sphere spins around the x axis, the rotation
changes the distribution of momenta in the z direction
(adds/subtracts to velocity for y > 0 and y < 0 respec-
tively)

For the nucleon the analogous modification is described
by E(x,t).



summary

e DVCS allows probing generalized parton distribu-
d
/iemp T~ <p/

e (el

GPDs defined through matrix elements of light-cone
correlation (similar to usual parton distributions),

but g =p' — p #£0.

e GPDs resemble both usual parton distributions and
form factors.

e t-dependence of £ =0 GPDs (i.e. only L momen-
tum transfer) can be interpreted as Fourier trans-
form of impact parameter dependent parton distri-
butions ¢(z, b))

Hx, O —Az) — 1 d%  q(z,b ) ZELEKL#
H(z,0,—A2) = 1d%, Aq(z, b )e 1A

e g(x,b), (j(:l:, b, ) have density interpretation (e.g.
g(z,b,) > 0forx > 0and sd*b q(z,b,) = q(z)

— knowledge of GPDs for & = 0 allows determining
distribution of partons in the L plane (as function
of distance to L center of momentum)

— provides completely new information about parton
structure of nucleons!



— novel probe for nonperturbative parton physics

e universal prediction: large x partons more localized
in b, than small x partons

e correlate with other experiments that are sensitive
to distribution of partons in L plane, such as mul-
tiple parton scattering, ...

e DVCS experiments only probe & # 0, but extrap-
olation to & = 0 possible since moments of GPDs
have polynomial & dependence.

e published in: M.B., PRD 62, 71503 (2000); see also:
hep-ph/0008051 and hep-ph/0010082.



