On the Way to QCD Precision Test with Deep Inelastic Scattering

Johannes Blümlein

DESY

- 1. Introduction
- 2. Basic Techniques
- 3. QCD Perturbation Theory to $O(\alpha_s^3)$,
- 4. New Mathematics in Perturbation Theory
- 5. Non-Singlet Analysis
- 6. The Singlet Sector
- 7. Polarized Nucleons
- 8. $\Lambda_{\rm QCD}$ and $\alpha_s(M_Z^2)$
- 9. Future Avenues

1. Introduction

The Door to the Very Small is Opened by Microscopes.

ROBERT HOOKE (1635-1703)

Remake of the original microscope

Observation of cork cells

DEEPLY INELASTIC SCATTERING

space-like process :

$$q^{2} = (l - l')^{2} = -Q^{2} < 0$$
$$W^{2} = (p + q)^{2} \ge M_{p}^{2}$$
$$x = \frac{Q^{2}}{2p \cdot q}, \qquad y = \frac{p \cdot q}{p \cdot l}$$
$$0 \le x, y \le 1$$

STUDY OF THE NUCLEON STRUCTURE

RUTHERFORD CHADWICK

Stern

HOFSTADTER

Friedman

Kendall

TAYLOR

BJORKEN DIRAC MEDAL 2004

GROSS (LL2004: APRIL DESY) POLITZER WILCZEK Feynman NOBEL LAUREATES 2004

The Resolution of the Nucleon Microscope

$$\Delta x \sim \frac{1}{|Q|} = \frac{1}{\sqrt{-q^2}}$$

IF THERE ARE NEW COMPOSITENESS SCALES, ONE MAY FIND THEM IN THE FUTURE.

$$Q^2 > 10^4 \, {\rm GeV}^2, \qquad \qquad 1 \, {\rm GeV}^2 \sim M_p^2 \label{eq:Q2}$$

WHEN IS A PARTON ?

S. DRELL:

Infinite Momentum Frame: P - large

 $au_{\mathrm{int}} \ll au_{\mathrm{life}}$

$$au_{\rm int} \sim \frac{1}{q_0} = \frac{4Px}{Q^2(1-x)}$$

$$\tau_{\text{life}} \sim \frac{1}{\sum_{i} E_{i} - E} = \frac{2P}{\sum_{i} (k_{\perp i}^{2} + M_{i}^{2})/x_{i} - M^{2}} \simeq \frac{2Px(1-x)}{k_{\perp}^{2}}$$

$$\frac{\tau_{\rm int}}{\tau_{\rm life}} = \frac{2k_\perp^2}{Q^2(1-x)^2}$$

Stay away from $x \to 0$, since xP becomes too small. Stay away from $x \to 1$.

$$Q^2 \gg k_\perp^2$$
.

$Main \ Research \ Objectives :$

- $rac{}{>}$ Precise Measurement of $\alpha_s(M_Z^2)$
- Reveal polarized and unpolarized parton densities at highest precision
- Precision tests of QCD
- Find novel sub-structures

 \implies Perturbative QCD :

NNLO calculations using new technologies \implies Lattice QCD :

Calculation of certain non-perturbative quantities a priori

UNIFICATION OF FORCES AND α_s

2. Basic Techniques

$$\frac{d\sigma^{\text{DIS}}}{dxdy} \propto \sum_{s'} \overline{|M|^2} = \frac{1}{Q^4} \quad L_{\mu\nu} \quad W^{\mu\nu}, \quad \text{pure } \gamma \text{ exchange.}$$

$$L_{\mu\nu} \qquad - \qquad \text{calculable}$$

$$W^{\mu\nu} \qquad - \qquad \text{not calculable}$$

Parameterize: according to the symmetries *P*, *T*, *C*, *etc*.

$$W^{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) W_1(x,Q^2) + \frac{1}{M_p^2} \widehat{P}_{\mu} \widehat{P}_{\nu} W_2(x,Q^2) + \dots$$
$$\widehat{P}_{\mu} = p_{\mu} - \frac{q \cdot p}{q^2} q_{\mu} .$$

The Parton Model :

R.P. Feynman, 1969; J.D. Bjorken, E.A. Paschos, 1969

ANSATZ:

 $W_i(x, Q^2)$ is obtained as an integral over the momentum distributions of LOCAL SUB-COMPONENTS, THE PARTONS.

$$W_2(x,Q^2) = \sum_i \int_0^1 dx_i f(x_i) x_i e_i^2 \delta\left(\frac{q.p_i}{M^2} - \frac{Q^2}{2M}\right)$$

 \implies Strong correlation between p.q and Q^2 \implies "Micro Canonical Ensemble" $f_i(x)$ - Distribution Function

$$q.p_i = x_i p.q, \quad 2p.q = Q^2/x, \quad M\nu = p.q$$

$$\nu W_2(x,Q^2) = \sum_i e_i^2 x f_i(x) \equiv F_2(x) .$$

Bjorken Limit :

$$Q^2 o \infty, \qquad
u o \infty$$

 $x = \text{const.}$

Scaling :

$$\begin{array}{rccc}
MW_1(\nu,Q^2) & \to & F_1(x) \\
\nu W_2(\nu,Q^2) & \to & F_2(x)
\end{array}$$

The Light Cone Expansion :

More general approach, allowing for higher twist.

Brandt, Preparata, Zimmermann, Frishman, Christ et al.

$$W_{\mu\nu}(p,q) = \int d^4x e^{iqx} \langle p \left| \left[j_{\mu}(x), j_{\nu}(0) \right] \right| p \rangle$$

$$T[j_{\mu}(x), j_{\nu}(0)] = \frac{x^2 g_{\mu\nu} - 2x_{\mu}x_{\nu}}{\pi^4 (x^2 - i\varepsilon)^4} + O_{\mu\nu}$$
$$-i\frac{x^\lambda \sigma_{\mu\lambda\nu\rho}O_V^\rho(x, 0)}{2\pi^2 (x^2 - i\varepsilon)} - i\frac{x^\lambda \varepsilon_{\mu\lambda\nu\rho}O_{V5}^\rho(x, 0)}{2\pi^2 (x^2 - i\varepsilon)}$$

$$O_{V}^{\mu}(x,y) = :\overline{\psi(x)}\gamma^{\mu}\psi(y) - \overline{\psi(y)}\gamma^{\mu}\psi(x):$$

$$O_{V5}^{\mu}(x,y) = :\overline{\psi(x)}\gamma^{\mu}\gamma_{5}\psi(y) - \overline{\psi(y)}\gamma^{\mu}\gamma_{5}\psi(x):$$

$$O^{\mu\nu}(x,y) = :\overline{\psi(x)}\gamma^{\mu}\psi(x)\overline{\psi}(y)\gamma^{\nu}\psi(x):$$

$$\psi(x) = \psi(0) + x^{\mu} \left[\partial_{\mu}\psi(x)\right]_{x=0} + \frac{1}{2!}x^{\mu}x^{\nu} \left[\partial_{\mu}\partial_{\nu}\psi(x)\right]_{x=0} + \dots$$

$$+\dots$$

$$O_{V,V5}^{\mu}(x,0) = \sum_{n=0}^{\infty} \frac{1}{n!}x^{\mu_{1}}\dots x^{\mu_{n}}O_{V,V5,\mu_{1},\dots,\mu_{n}}^{\mu}(0)$$

 \implies Calculate anomalous dimensions for Operators.

 \implies Only safe way to Higher Twists

Twist 2: LCE \simeq Parton Model

Kinematic Domain

H1, ZEUS + fixed target data

Scaling violations of $F_2(x, Q^2)$.

3. QCD Perturbation Theory to $O(\alpha_s^3)$, $\Lambda_{\rm QCD}$ and the PDF's

How can we measure $\alpha_s(Q^2)$ from the scaling violations of Structure Functions?

$$F_{j}(x,Q^{2}) = \hat{f}_{i}(x,\mu^{2}) \otimes \sigma_{j}^{i}\left(\alpha_{s},\frac{Q^{2}}{\mu^{2}},x\right)$$

$$\uparrow \text{ bare pdf} \quad \uparrow \text{ sub - system cross - sect.}$$

$$= \hat{f}_{i}(x,\mu^{2}) \otimes \Gamma_{k}^{i}\left(\alpha_{s}(R^{2}),\frac{M^{2}}{\mu^{2}},\frac{M^{2}}{R^{2}}\right)$$

$$\underbrace{finite \ pdf \equiv f_{k}}_{K} \otimes C_{j}^{k}\left(\alpha_{s}(R^{2}),\frac{Q^{2}}{\mu^{2}},\frac{M^{2}}{R^{2}},x\right)$$

finite Wilson coefficient

Move to Mellin space :

$$F_j(N) = \int_0^1 dx x^{N-1} F_j(x)$$

Diagonalization of the convolutions \otimes into ordinary products.

RENORMALIZATION GROUP EQUATIONS :

$$\left[M\frac{\partial}{\partial M} + \beta(g)\frac{\partial}{\partial g} - 2\gamma_{\psi}(g)\right]F_i(N) = 0$$

$$\left[M\frac{\partial}{\partial M} + \beta(g)\frac{\partial}{\partial g} + \gamma_{\kappa}^{N}(g) - 2\gamma_{\psi}(g)\right]f_{k}(N) = 0$$

$$\left[M\frac{\partial}{\partial M} + \beta(g)\frac{\partial}{\partial g} - \gamma_{\kappa}^{N}(g)\right]C_{j}^{k}(N) = 0$$

Callan–Symnanzik equations for mass factorization \equiv Altarelli–Parisi evolution equations

x-space :

$$\frac{d}{d\log(\mu^2)} \begin{pmatrix} q^+(x,Q^2) \\ G(x,Q^2) \end{pmatrix} = \frac{\alpha_s}{2\pi} \boldsymbol{P}(x,\alpha_s) \otimes \begin{pmatrix} q^+(x,Q^2) \\ G(x,Q^2) \end{pmatrix}$$
$$\boldsymbol{P}(x,\alpha_s) = \boldsymbol{P}^{(0)}(x) + \frac{\alpha_s}{2\pi} \boldsymbol{P}^{(1)}(x) + \left(\frac{\alpha_s}{2\pi}\right)^2 \boldsymbol{P}^{(2)}(x) + \dots$$

Evolution Equs.: 3 non-singlet, 1 singlet

SEPARATION OF NON-SINGLET AND SINGLET QUARK CONTRIBUTIONS IS **essential.**

3.1. Running Coupling Constant

$$\frac{\partial a_s(\mu^2)}{\partial \log \mu^2} = -\beta_0 a_s^2 - \beta_1 a_s^3 - \beta_2 a_s^4 - \beta_3 a_s^5 + O(a_s^6)$$

$$a_s \equiv \frac{g_{\rm ren}^2}{(4\pi)^2} = \frac{\alpha_s}{2\pi}$$

The values of the β_k :

$$\beta_{0} = 11 - \frac{2}{3}N_{f} \quad \text{GROSS, POLITZER, WILCZEK, T'HOOFT, 1973}$$

$$D\text{ISCOVERY OF ASYMPTOTIC FREEDOM :}$$

$$NOBEL LAUREATES 2004$$

$$\beta_{1} = 102 - \frac{38}{3}N_{f} \quad \text{CASWELL}(\dagger 11.9.01), \text{JONES, 1974}$$

$$\beta_{2} = \frac{2857}{2} - \frac{5033}{18}N_{f} + \frac{325}{54}N_{f}^{2}$$

$$\text{TARASOV, VLADIMIROV, ZHARKOV, 1981}$$

$$\text{LARIN, VERMASEREN, 1992}$$

$$\beta_{3} = \left(\frac{149753}{6} + 3564\zeta_{3}\right) - \left(\frac{1078361}{162} + \frac{6508}{27}\zeta_{3}\right)N_{f}$$

$$+ \left(\frac{50065}{162} + \frac{6472}{81}\zeta_{3}\right)N_{f}^{2} + \frac{1093}{729}N_{f}^{3}$$

VAN RITBERGEN, VERMASEREN, LARIN, 1997

THE SOLUTION OF THE RGE LEADS TO A FALLING COUPLING CONSTANT AS SCALES INCREASE.

S. Bethke, LL2004.

3.2. Splitting Functions

$O(lpha_s)$ unpolarized:

$$P_{\rm NS}^{(0)}(z) \equiv P_{qq}^{(0)}(z) = C_F \left[\frac{1+z^2}{1-z} \right]_+$$

$$P_{qg}^{(0)}(z) = T_f \left[(1-z)^2 + z^2 \right]$$

$$P_{gq}^{(0)}(z) = C_F \frac{1+(1-z)^2}{z}$$

$$P_{gg}^{(0)}(z) = 2C_A \left[\frac{1-z}{z} + \frac{z}{(1-z)_+} + z(1-z) \right] + \frac{1}{2}\beta_0 \delta(1-z)$$

QED : P_{qq} Fermi, 1924 P_{gq} Williams, 1933; Weizsäcker, 1934GROSS, WILCZEK; GEORGI, POLITZER, 1973;

further: LIPATOV, 1975; ALTARELLI, PARISI, 1977; KIM, SCHILCHER, 1977; DOKSHITSER, 1977

 $O(lpha_s)$ polarized:

$$\begin{aligned} \Delta P_{qq}^{(0)}(z) &= P_{qq}^{(0)}(z) \\ \Delta P_{qg}^{(0)}(z) &= T_f \left[(1-z)^2 - z^2 \right] \\ \Delta P_{gq}^{(0)}(z) &= C_F \frac{1 - (1-z)^2}{z} \\ \Delta P_{gg}^{(0)}(z) &= 2C_A \left[\left(\frac{1}{1-z} \right)_+ + 1 - 2z \right] + \frac{1}{2} \beta_0 \delta(1-z) \end{aligned}$$

Ito, 1975; К. Sasaki, 1975; Анмед & Ross 1975,1976; correct: Altarelli, Parisi, 1977.

no terms $\propto 1/z$.

J. Blümlein

2 LOOP :

UNPOLARIZED:

FLORATOS, D. ROSS, SACHRAIDA, 1977-79; CURCI, FURMANSKI,

Pertonzio, 1980; Furmanski, Petronzio, 1980; Gonzalez-Arroyo,

LOPEZ, YNDURAIN, 1979, 1980; FLORATOS, KOUNNAS, LACAZE, 1981ABC;

VAN NEERVEN, HAMBERG, 1982;

POLARIZED:

Zijlstra, van Neerven, 1994; Mertig, van Neerven, 1995;

VOGELSANG 1995.

3 LOOP :

UNPOLARIZED:

MOMENTS : LARIN, NOGUEIRA, VAN RITBERGEN, VERMASEREN, 1994, 1997; Retey, Vermaseren, 2001; J.B., Vermaseren, 2004. Complete : Moch, Vermaseren, Vogt, 2004.

3.3. Coefficient Functions

$O(lpha_s)$ unpolarized:

$$C_{F_{2}^{q}}^{(1)}(z) = C_{F} \left\{ \frac{1+z^{2}}{1-z} \left[\ln \left(\frac{1-z}{z} \right) - \frac{3}{4} \right] + \frac{1}{4} \left(9+5z \right) \right\}_{+}$$

$$C_{F_{2}^{g}}^{(1)}(z) = 2N_{f}T_{f} \left\{ \left[z^{2} + (1-z)^{2} \right] \ln \left(\frac{1-z}{z} \right) - 1 + 8z(1-z) \right\}$$

$$C_{F_{1}^{q}}^{(1)}(z) = C_{F_{2}^{q}}^{(1)}(z) - C_{F} \cdot 2z$$

$$C_{F_{1}^{g}}^{(1)}(z) = C_{F_{2}^{q}}^{(1)}(z) - 8N_{f}T_{f}z(1-z)$$

$$C_{F_{3}^{q}}^{(1)}(z) = C_{F_{2}^{q}}^{(1)}(z) - C_{F}(1+z)$$

FURMANSKI, PETRONZIO, 1982: correct form.

$O(lpha_s)$ polarized:

$$C_{g_1^q}^{(1)}(z) = C_{F_1^q}^{(1)}(z)$$

$$C_{g_1^g}^{(1)}(z) = 4N_f T_f \left\{ [2z-1] \ln\left(\frac{1-z}{z}\right) + 3 - 4z \right\}$$

Altarelli, Ellis, Martinelli, 1979; Humpert, van Neerven, 1981; Bodwin Qui, 1990.

2 LOOP :

POLARIZED, UNPOLARIZED: Zijlstra, van Neerven 1992–1994; Moments: Moch, Vermaseren, 1999

UNPOLARIZED, HEAVY FLAVOR:

LAENEN, RIEMERSMA, SMITH, VAN NEERVEN, 1993, 1994 Mellin Space: Alekhin, J.B., 2004

3 LOOP :

UNPOLARIZED:

MOMENTS : LARIN, NOGUEIRA, VAN RITBERGEN, VERMASEREN, 1994, 1997; Retey, Vermaseren, 2001; J.B., Vermaseren, 2004. Complete : Moch, Vermaseren, Vogt, in preparation.

Example : J.B., Vermaseren, 2004

$$\begin{split} C_2^{\text{NS},16}(a_3) &= \frac{4047739719}{190590400} C_F a_3 \\ &+ \left[\left(\frac{44426674163044428879366970127}{3255255} \zeta_3 \right) C_F^2 \right] \\ &+ \left(\frac{17918308408498294222783087}{59422705873182812160000} - \frac{113298677}{1021020} \zeta_3 \right) C_F C_A \\ &- \frac{143568372761907472111177}{2758911344112059136000} C_F N_F \right] a_s^2 \\ &+ \left[\left(\frac{59290512768143}{312744521200} \zeta_4 - \frac{27643576}{21879} \zeta_5 \right) \\ &+ \frac{3036813397599509725084677293842505976559161689}{803458016040775933421647863403347968000000} \\ &+ \frac{1494341926940450865387403}{595674040206012768000} \zeta_3 \right) C_F^3 \\ &+ \left(\frac{59290512768143}{6254891042400} \zeta_4 + \frac{262865377883475726558800935515033190333}{56646805852503848671021043712000000} \\ &+ \frac{47187263}{51051} \zeta_5 - \frac{15355050469171482313}{4991403051835200} \zeta_3 \right) C_F C_A^2 \\ &+ \left(\frac{7227384935999670312318789884999}{7605639835262954714045440000} + \frac{64419601}{20675655} \zeta_3 \right) C_F N_F^2 \\ &+ \left(\frac{775002662711876875284509176089051465242741}{1652500620329242273431025887166464000000} \\ &- \frac{2849482004138921491531}{20846368800} \zeta_3 + \frac{933963}{21879} \zeta_5 \\ &- \frac{59290512768143}{32097746994455372827848887040000} + \frac{64419601}{4021001384400} \zeta_3 \\ &- \frac{4073207241348493196152222079933557529}{352977746994455372827848877400000} + \frac{64419601}{153153} \zeta_4 \right) C_F^2 N_F \\ &+ \left(\frac{5987886558667}{185049546800} \zeta_3 - \frac{64119601}{51353} \zeta_4 \\ \\ &- \frac{582811634921542995647179358698536547}{15354910729335721740800000} \right) C_F C_A N_F \right] a_8^3 \end{aligned}$$

Agreement with : an upcoming paper by Moch, Vermaseren, Vogt

4. New Mathematics in Perturbation Theory

Consider hard scattering processes in massless field theories: QCD, QED, $m_i \rightarrow 0$ Factorization Theorem Leading Twist: The cross section σ factorizes as

$$\sigma = \sum_k \sigma_{k,W} \otimes f_k$$

 σ_W perturbative Wilson Coefficient

f non-perturbative Parton Density

⊗ Mellin convolution

$$[A \otimes B](x) = \int_0^1 dx_1 \int_0^1 dx_2 \delta(x - x_1 x_2) A(x_1) B(x_2)$$

$$\mathbf{M} [A \otimes B](N) = \mathbf{M} [A](N) \cdot \mathbf{M} [B](N)$$

with the Mellin transform :

$$\mathbf{M}[f(x)](N) = \int_{0}^{1} dx x^{N-1} f(x), \quad Re[N] > c$$

Observation :

Feynman Amplitudes seem to obey the Mellin Symmetry

i.e. to significantly simplify in Mellin Space

van Neerven, Zijlstra 1992

$$\begin{split} &c_{2,-}^{(2)}(x) = C_F \left(C_F - C_A / 2 \right) \times \\ &\left\{ \frac{1+x^2}{1-x} \left[\left[4\ln^2(x) - 16\ln(x)\ln(1+x) - 16\text{Li}_2(-x) - 8\zeta_2 \right]\ln(1-x) \right. \\ &+ \left[-2\ln^2(x) + 20\ln(x)\ln(1+x) - 8\ln^2(1+x) + 8\text{Li}_2(1-x) + 16\text{Li}_2(-x) - 8 \right]\ln(x) \\ &- 16\ln(1+x)\text{Li}_2(-x) - 8\zeta_2\ln(1+x) - 16 \left[\text{Li}_3 \left(-\frac{1-x}{1+x} \right) - \text{Li}_3 \left(\frac{1-x}{1+x} \right) \right] \right] \\ &- 16\text{Li}_2(1-x) + 8S_{1,2}(1-x) + 8\text{Li}_3(-x) - 16S_{1,2}(-x) + 8\zeta_3 \\ &+ (4+20x) \left[\ln^2(x)\ln(1+x) - 2\ln(x)\ln^2(1+x) - 2\zeta_2\ln(1+x) - 4\ln(1+x)\text{Li}_2(-x) \right. \\ &+ 2\text{Li}_3(-x) - 4S_{1,2}(-x) + 2\zeta_3 \right] + \left(32 + 32x + 48x^2 - \frac{72}{5}x^3 + \frac{8}{5x^2} \right) \\ &\times \left[\text{Li}_2(-x) + \ln(x)\ln(1+x) \right] + 8(1+x) \left[\text{Li}_8(1-x) + \ln(x)\ln(1-x) \right] + 16(1-x)\ln(1-x) \\ &+ \left(-4 - 16x - 24x^2 + \frac{36}{5}x^3 \right)\ln^2(x) + \frac{1}{5} \left(-26 - 106x + 72x^2 - \frac{8}{x} \right) \ln(x) \\ &+ \left(-4 + 20x + 48x^2 - \frac{72}{5}x^3 \right)\zeta_2 + \frac{1}{5} \left(-162 + 82x + 72x^2 + \frac{8}{x} \right) \right\} \end{split}$$

.... several other pages for $c_2^{(+)}(x), c_2^G(x), c_L^{(q,G)}(x)$ \implies 77 Functions @ 2 Loops \implies partly rather complicated arguments \implies relations are not directly visible ...

The 77 functions do roughly correspond in number to the number of all possible harmonic sums up to weight w=4: 80.

GOAL: SIMPLICITY

W. of Occam

Multiple Harmonic Sums to Level 6:

THE SIMPLEST EXAMPLE :

$$P_{qq}(x) = \left(\frac{1+x^2}{1-x}\right)_+ = \frac{2}{(1-x)}_+ + \dots$$
$$\int_0^1 dx \frac{x^{N-1}}{(1-x)_+} = -\sum_{k=0}^{N-2} \int_0^1 dx x^k = -\sum_{k=1}^{N-1} \frac{1}{k} = -S_1(N-1)$$

Alternating sums :

$$S_{-1}(N-1) = (-1)^{N-1} \mathbf{M} \left[\frac{1}{1+x} \right](N) - \ln(2) = \int_0^1 dx \frac{x^{N-1}}{(1-x)_+} = \sum_{k=1}^{N-1} \frac{(-1)^k}{k}$$

(Finite for $N \to \infty$.)

General case :

$$S_{a_1,\dots,a_l}(N) = \sum_{k_1=1}^N \frac{(\operatorname{sign}(a_1))^{k_1}}{k_1^{|a_1|}} \sum_{k_2=1}^{k_1} \frac{(\operatorname{sign}(a_2))^{k_2}}{k_2^{|a_2|}} \dots$$

Vermaseren, 1997

All Mellin transforms occurring in massless Field Theories for 1-Parameter Quantities can be represented by Harmonic Sums

(at least to 3-loop order).

J. Blümlein

Algebraic Relations

First relation: L. Euler, 1775

$$S_{m,n} + S_{n,m} = S_m \cdot S_n + S_{m+n}, \quad m, n > 0$$

Generalized to alternating sums by

 $S_{m,n} + S_{n,m} = S_m \cdot S_n + S_{m \wedge n}, m \wedge n = [|m| + |n|] \operatorname{sign}(m) \operatorname{sign}(n)$

Ternary relations: Sita Ramachandra Rao, 1984; 4-ary relation: J.B., Kurth, 1998.

These & other relations hold widely independent of their Value and Type.

Determined by : • Index Structure

• Multiplication Relation

Ramanujan: integer sums

Faa di Bruno: roots of multivar. algebraic equations

The Formalism applies as well to the Harmonic Polylogarithms. Remiddi, Vermaseren, 1999. Linear Representations of Mellin Transform by Harmonic Sums:

$$\mathbf{M}[F_w(x)](N) = S^w_{k_1,...,k_m}(N) + P\left(S^{\tau'}_{k_1,...,k_r}, \sigma^{\tau''}_{k_1,...,k_p}\right)$$

$$w = \sum_{i=1}^{m} |k_i|$$
 Weight
 $\tau', \tau'' < w$ *P* is a polynomial.

W	#	Σ	
1	2	2	
2	6	8	
3	18	26	2 Loop anom. Dimensions
4	54	80	2 Loop Wilson Coefficients
5	162	242	3 Loop anom. Dimensions
6	486	728	3 Loop Wilson Coefficients
	$2 \cdot 3^{w-1}$	$3^{w} - 1$	

Shuffle Products

Depth 2:

$$S_{a_1}(N) \sqcup S_{a_2}(N) = S_{a_1,a_2}(N) + S_{a_2,a_1}(N)$$

Depth 3:

 $S_{a_1}(N) \sqcup S_{a_2,a_3}(N) = S_{a_1,a_2,a_3}(N) + S_{a_2,a_1,a_3}(N) + S_{a_2,a_3,a_1}(N)$

Depth 4:

Algebraic Equations

Depth 2:

$$S_{a_1}(N) \sqcup S_{a_2}(N) - S_{a_1}(N)S_{a_2}(N) - S_{a_1 \wedge a_2}(N) = 0$$

Depth 3:

 $S_{a_1}(N) \sqcup S_{a_2,a_3}(N) \quad - \quad S_{a_1}(N)S_{a_2,a_3}(N) - S_{a_1 \wedge a_2,a_3}(N) - S_{a_2,a_1 \wedge a_3}(N) = 0$

Depth 4:

Basic Sums = # Permutations - # Independent Equations

Theory of Words

Can we count the Basis in simpler way ? \implies YES.

Free Algebras and Elements of the Theory of Codes → Particle Physics

Only the multiplication relation and the Index structure matters

 $\mathfrak{A} = \{a, b, c, d, \ldots\}$ Alphabet

 $a < b < c < d < \dots$ ordered

 $\mathfrak{A}^*(\mathfrak{A})$ Set of all words W

 $W = a_1 \cdot a_2 \cdot a_{27} \dots a_{532} \equiv$ concatenation product (nc)

 $W = p \cdot x \cdot s$ **p** = prefix; **s** = suffix

Definition:

A Lyndon word is smaller than any of its suffixes.

Theorem: [Radford, 1979]

The shuffle algebra $K\langle \mathfrak{A} \rangle$ is freely generated by the Lyndon words. I.e. the number of Lyndon words yields the number of basic elements.

Examples :

 $\{a, a, \dots, a, b\} = aaa \dots ab$ 1 Lyndon word for these sets

 $n \quad a's: \quad n_{basic}/n_{all} = 1/n \qquad n \equiv \text{ depth of the sums}$

Symmetries lead to a smaller fraction.

Is there a general Counting Relation ?

E. Witt, 1937

$$l_n(n_1, \dots, n_q) = \frac{1}{n} \sum_{d \mid n_i} \mu(d) \frac{(n/d)!}{(n_1/d)! \dots (n_q/d)!}, \qquad \sum_i n_i = n$$

 $\mu(k)$ Möbius function

2nd Witt formula.

The Length of the Basis is a function mainly of the Depth.

Observation: Sums with index -1 do not occur.

$$N_{\neg -1}(w) = \frac{1}{2} \left[\left(1 + \sqrt{2} \right)^w + \left(1 - \sqrt{2} \right)^w \right]$$
$$N_{\neg -1}^{\text{basic}}(w) = \frac{2}{w} \sum_{d|w} \mu\left(\frac{w}{d}\right) N_{\neg -1}(d)$$

J.B., 2004; Further Reduction: Structural Relations.

Weight	Sums	a-basic	Sums $\neg -1$	a-basic	str. Rel.	Fraction
1	2	2	1	0	0	0.0
2	6	3	3	0	0	0.0
3	18	8	7	2	2	0.1111
4	54	18	17	5	3	0.0555
5	162	48	41	14	8	0.0494
6	486	116	99	28	?	<0.0576
	728	195	168	49	<41	<0.0563

The Basic Functions :

The final set of functions:

Trivial functions:

$$S_{\pm k}(N) \longrightarrow \psi^{(k-1)}(N+1)$$

For w = 1, 2 no non-trivial functions contribute to the anomalous dimensions and Wilson coefficients.

Non-trivial functions:

 ${\cal N}=3:$ Two–Loop anomalous dimensions

$$\mathbf{M}\left[\frac{\mathrm{Li}_2(x)}{1+x}\right](N)$$

Yndurain et al., 1980

N = 4: Two–Loop Wilson Coefficients

$$\mathbf{M} \begin{bmatrix} \frac{\ln(1+x)}{1+x} \end{bmatrix} (N), \quad \mathbf{M} \begin{bmatrix} \frac{\mathrm{Li}_2(x)}{1-x} \end{bmatrix} (N), \quad \mathbf{M} \begin{bmatrix} \frac{\mathrm{S}_{1,2}(x)}{1\pm x} \end{bmatrix} (N)$$

Structure Fct.: J.B., S. Moch, 2003,
Drell-Yan, Higgs-Prod., Fragmentation: J.B., V. Ravindran, 2004.

N = 5: Three–Loop Anomalous Dimensions

$$\begin{split} \mathbf{M} \begin{bmatrix} \mathrm{Li}_4(x) \\ 1 \pm x \end{bmatrix} (N), \quad \mathbf{M} \begin{bmatrix} S_{1,3}(x) \\ 1 + x \end{bmatrix} (N), \quad \mathbf{M} \begin{bmatrix} S_{2,2}(x) \\ 1 \pm x \end{bmatrix} (N), \\ \mathbf{M} \begin{bmatrix} S_{2,2}(-x) - \mathrm{Li}_2^2(-x)/2 \\ 1 \pm x \end{bmatrix} (N), \quad \mathbf{M} \begin{bmatrix} \mathrm{Li}_2^2(x) \\ 1 + x \end{bmatrix} (N) \\ & \mathsf{J.B., S. Moch, 2004.} \end{split}$$

Essentially 14 Functions seem to rule the single scale processes of massless QCD.

J. Blümlein

J.B., H. Böttcher, A. Guffanti, 2004

The World Data on F_2

Experiment	x	Q^2, GeV^2	F_2	Norm
BCDMS (100)	0.35 - 0.75	11.75 - 75.00	51	1.018
BCDMS (120)	0.35 – 0.75	13.25 - 75.00	59	1.011
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	1.017
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	1.018
NMC (comb)	0.35 – 0.50	7.00 - 65.00	15	1.003
SLAC (comb)	0.30 - 0.62	7.30 – 21.39	57	1.003
H1 (hQ2)	0.40 - 0.65	200 - 30000	26	1.018
ZEUS (hQ2)	0.40 - 0.65	650 - 30000	15	1.001
proton			322	
BCDMS (120)	0.35 - 0.75	13.25 - 99.00	59	0.992
BCDMS (200)	0.35 – 0.75	32.50 - 137.50	50	0.993
BCDMS (280)	0.35 – 0.75	43.00 - 230.00	49	0.993
NMC (comb)	0.35 - 0.50	7.00 - 65.00	15	0.980
SLAC (comb)	0.30 - 0.62	10.00 - 21.40	59	0.980
deuteron			232	
BCDMS (120)	0.070 - 0.275	8.75 - 43.00	36	1.000
BCDMS (200)	0.070 – 0.275	17.00 - 75.00	29	1.000
BCDMS (280)	0.100 - 0.275	32.50 - 115.50	27	1.000
NMC (comb)	0.013 – 0.275	4.50 - 65.00	88	1.000
SLAC (comb)	0.153 - 0.293	4.18 - 5.50	28	1.000
non-singlet			208	
total			762	

• CUTS: 0.3 < x < 1.0 for F_2^p and F_2^d

$$\begin{array}{l} 0.0 \ < \ x \ < \ 0.3 \ {\rm for} \ F_2^{ns} = 2(F_2^p - F_2^d) \\ 4.0 \ < \ Q^2 \ < \ 30000 \ GeV^2 \text{,} \ W^2 \ > \ 12.5 \ GeV^2 \end{array}$$

Fully Correlated Error Calculation

• The fully correlated 1σ error for the parton density f_q as given by Gaussian error propagation is

$$\sigma(f_q(x)^2) = \sum_{i,j=1}^{n_p} \left(\frac{\partial f_q}{\partial p_i} \frac{\partial f_q}{\partial p_j} \right) \operatorname{cov}(p_i, p_j) , \qquad (1)$$

where the $\partial f_q / \partial p_i$ are the derivatives of f_q w.r.t. the parameters p_i and the $\operatorname{cov}(p_i, p_j)$ are the elements of the covariance matrix as determined in the fit.

- The derivatives $\partial f_q / \partial p_i$ at the input scale Q_0^2 can be calculated analytically. Their values at Q^2 are given by evolution.
- The derivatives evolved in MELLIN-N space are transformed back to *x*-space and can then be used according to the error propagation formula above.
- \implies As an example the derivative of f(x, a, b) w.r.t. parameter a in MELLIN–N space reads:

Fit Results

- Parameter values and Covariance Matrix at the input scale $Q_0^2 = 4.0 \, GeV^2$

$$xq_i(x, Q_0^2) = A_i x^{a_i} (1-x)^{b_i} (1+\rho_i x^{\frac{1}{2}} + \gamma_i x)$$

u_v	a	0.299 ± 0.007
	b	4.157 ± 0.031
ρ		0.751
	γ	28.833
d_v	a	0.488 ± 0.048
	b	6.609 ± 0.332
	ho	-1.690
	γ	17.247
$\Lambda^{(4)}_{QCD}$ 233 \pm 34 MeV		$233 \pm 34 \; MeV$
$\chi^2/ndf = 630/757 = 0.83$		

• Covariance Matrix at the input scale $Q_0^2 = 4.0 \, GeV^2$

	$\Lambda^{(4)}_{QCD}$	a_{u_v}	b_{u_v}	a_{d_v}	b_{d_v}
$\Lambda^{(4)}_{QCD}$	1.15E-3				
a_{u_v}	1.03E-4	5.40E-5			
b_{uv}	-8.45E-5	1.71E-4	9.59E-4		
a_{d_v}	4.17E-4	8.84E-6	-4.35E-4	2.32E-3	
b_{d_v}	2.32E-3	4.21E-4	-2.28E-3	1.48E-2	1.10E-1

Heavy Flavor NS-contributions

NON-SINGLET 3-LOOP QCD ANALYSIS

Moments and Lattice Results

f	n	This Fit	MRST04	A02
u_v	2	0.288 ± 0.003	0.285	0.304
	3	0.084 ± 0.001	0.082	0.087
	4	0.0319 ± 0.0004	0.032	0.033
d_v	2	0.113 ± 0.004	0.115	0.120
	3	0.026 ± 0.001	0.028	0.028
	4	0.0078 ± 0.0004	0.009	0.010
$u_v - d_v$	2	0.175 ± 0.004	0.171	0.184
	3	0.058 ± 0.001	0.055	0.059
	4	0.0241 ± 0.0005	0.022	0.024

First lattice results on $u_v - d_v$, N = 2 yield promising values using overlap-fermions (QCDSF).

More results also are upcoming.

6. The Singlet Sector

Parton Densities: Relative Size

PILE-UP EFFECTS:

Iterative vs Exact Solution of Evolution Equations

Blümlein, Riemersma, van Neerven, Vogt, 1996

$$\overline{d} - \overline{u}$$

Strange quark distribution

• CCFR : iron target, EMC effect. How large ? CAN HERMES MEASURE $s(x, Q^2)$?

$c\overline{c}$ Structure Function F_2

Mellin-space representation :

- S. Alekhin and J.B., 2004
- necessary for scheme-invariant evolution.
- fast and accurate access to heavy flavor Wilson coefficients.

Gluon Density

 $F_L(x,Q^2)$

J. Blümlein

Gluon Distribution:HERMES

Scheme-invariant Evolution Equations

Evolution Equations of Structure or Fragmentation Functions do normally exhibit FACTORIZATION and RENORMALIZATION SCHEME dependences. Instead of PROCESS-INDEPENDENT SCHEME-DEPENDENT Evolution equations for PARTONS one may think of PROCESS-DEPENDENT SCHEME-INDEPENDENT EVOLUTION EQUATIONS FOR **Observables**.

Evolution Equations :

$$\frac{\partial}{\partial t} \left(\begin{array}{c} F_A^N \\ F_B^N \end{array} \right) = -\frac{1}{4} \left(\begin{array}{c} K_{AA}^N & K_{AB}^N \\ K_{BA}^N & K_{BB}^N \end{array} \right) \left(\begin{array}{c} F_A^N \\ F_B^N \end{array} \right) \ ,$$

evolution variable

$$t = -\frac{2}{\beta_0} \ln\left(\frac{a_s(Q^2)}{a_s(Q_0^2)}\right),\,$$

physical evolution kernels

$$K_{IJ}^{N} = \left[-4 \frac{\partial C_{I,m}^{N}(t)}{\partial t} \left(C^{N} \right)_{m,J}^{-1}(t) - \frac{\beta_{0}a_{s}(Q^{2})}{\beta(a_{s}(Q^{2}))} C_{I,m}^{N}(t) \gamma_{mn}^{N}(t) \left(C^{N} \right)_{n,J}^{-1}(t) \right]$$

with

$$K_{IJ}^N = \sum_{n=0}^{\infty} a_s^n(Q^2) \left(K^N\right)_{IJ}^{(n)}$$

Possible choices for F_A and F_B are F_2 and $\partial F_2/\partial t$ or F_2 and F_L . For these sets of physical observables we will examine the crossing-behaviour from S to T-Channel.

The dependence on the **renormalization scheme** is only removed if the perturbation series is summed to all orders.

J. Blümlein

System : $F_2(x,Q^2), \partial F_2/\partial t(x,Q^2)$

Leading Order :

$$\begin{split} K_{22}^{N(0)} &= 0 \\ K_{2d}^{N(0)} &= -4 \\ K_{d2}^{N(0)} &= \frac{1}{4} \left(\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gq}^{N(0)} \right) \\ K_{dd}^{N(0)} &= \gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \end{split}$$

Next-to-Leading Order :

[Furmanski, Petronzio 1982]

$$\begin{split} K_{22}^{N(1)} &= K_{2d}^{N(1)} = 0 \\ K_{d2}^{N(1)} &= \frac{1}{4} \left[\gamma_{gg}^{N(0)} \gamma_{qq}^{N(1)} + \gamma_{gg}^{N(1)} \gamma_{qq}^{N(0)} - \gamma_{qg}^{N(1)} \gamma_{gq}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gq}^{N(1)} \right] \\ &- \frac{\beta_1}{2\beta_0} \left(\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gq}^{N(0)} \gamma_{qg}^{N(0)} \right) \\ &+ \frac{\beta_0}{2} C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} - 2\beta_0 \right) \\ &- \frac{\beta_0}{2} \frac{C_{2,g}^{N(1)}}{\gamma_{qg}^{N(0)}} \left[(\gamma_{qq}^{N(0)})^2 - \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} + 2\gamma_{qg}^{N(0)} \gamma_{gq}^{N(0)} - 2\beta_0 \gamma_{qq}^{N(0)} \right] \\ &- \frac{\beta_0}{2} \left(\gamma_{qq}^{N(1)} - \frac{\gamma_{qq}^{N(0)} \gamma_{qg}^{N(1)}}{\gamma_{qg}^{N(0)}} \right) \end{split}$$
(1)

$$K_{dd}^{N(1)} = \gamma_{qq}^{N(1)} + \gamma_{gg}^{N(1)} - \frac{\beta_1}{\beta_0} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) + 4\beta_0 C_{2,q}^{N(1)} - 2\beta_1$$
$$-\frac{2\beta_0}{\gamma_{qg}^{N(0)}} \left[C_{2,g}^{N(1)} \left(\gamma_{qq}^{N(0)} - \gamma_{gg}^{N(0)} - 2\beta_0 \right) - \gamma_{qg}^{N(1)} \right]$$

System :
$$F_2(x, Q^2), F_L(x, Q^2)$$

 $\big(\widetilde{F}_L^N \equiv F_L^N / (a_s(Q^2)C_{L,g}^{N(1)})\big)$

Leading Order :

[Catani 1997]

$$\begin{split} K_{22}^{N(0)} &= \gamma_{qq}^{N(0)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \gamma_{qg}^{N(0)} \\ K_{2L}^{N(0)} &= \gamma_{qg}^{N(0)} \\ K_{L2}^{N(0)} &= \gamma_{gq}^{N(0)} - \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}}\right)^2 \gamma_{qg}^{N(0)} \\ K_{LL}^{N(0)} &= \gamma_{gg}^{N(0)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \gamma_{qg}^{N(0)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \left(\gamma_{qq}^{N(0)} - \gamma_{gg}^{N(0)}\right) \end{split}$$

Next-to-Leading Order :

[BRvN 2000]

$$K_{22}^{N(1)} = \gamma_{qq}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{qq}^{N(0)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \left(\gamma_{qg}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{qg}^{N(0)} \right) + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} \gamma_{qq}^{N(0)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} \gamma_{gg}^{N(0)}$$

$$\begin{split} & - \left[\frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} + \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 C_{2,g}^{N(1)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \right] \gamma_{qg}^{N(0)} \\ & + C_{2,g}^{N(1)} \gamma_{gq}^{N(0)} + 2\beta_0 \left(C_{2,q}^{N(1)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} \right) \\ K_{2L}^{N(1)} &= \gamma_{qg}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{qg}^{N(0)} - C_{2,g}^{N(1)} (\gamma_{qq}^{N(0)} - \gamma_{gg}^{N(0)}) + 2\beta_0 C_{2,g}^{N(1)} \\ & + \left(C_{2,q}^{N(1)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} - \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \right) \gamma_{qg}^{N(0)} \\ K_{L2}^{N(1)} &= \gamma_{gq}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{gq}^{N(0)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \left(\gamma_{qq}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{qq}^{N(0)} \right) \end{split}$$

$$-\left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}}\right)^{2} \left(\gamma_{qg}^{N(1)} - \frac{\beta_{1}}{\beta_{0}}\gamma_{qg}^{N(0)}\right) \\ -\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \left(\gamma_{gg}^{N(1)} - \frac{\beta_{1}}{\beta_{0}}\gamma_{gg}^{N(0)}\right)$$

$$+ \left[\frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,q}^{N(1)} + \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 C_{2,g}^{N(1)} \right] \gamma_{qq}^{N(0)} \\ - \left[\left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^3 C_{2,g}^{N(1)} + 2 \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} - \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \\ \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 = N(1) \right] = N(0)$$

$$-\left(\frac{C_{L,q}}{C_{L,g}^{N(1)}}\right) C_{2,q}^{N(1)} \gamma_{qg}^{N(0)} + \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}}C_{2,g}^{N(1)} - C_{2,q}^{N(1)} + \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}}\right) \gamma_{gq}^{N(0)}$$

$$\begin{split} & - \left[\frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} + \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 C_{2,g}^{N(1)} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,q}^{N(1)} \right] \gamma_{gg}^{N(0)} \\ & + 2\beta_0 \left(\frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \right) \\ K_{LL}^{N(1)} &= \gamma_{gg}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{gg}^{N(0)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \left(\gamma_{qg}^{N(1)} - \frac{\beta_1}{\beta_0} \gamma_{qg}^{N(0)} \right) \\ & - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} \gamma_{qq}^{N(0)} + \left[\frac{C_{L,q}^{N(2)}}{C_{L,g}^{N(1)}} - \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \right] \\ & + \left(\frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} \right)^2 C_{2,g}^{N(1)} \right] \gamma_{qg}^{N(0)} \\ & - C_{2,g}^{N(1)} \gamma_{gq}^{N(0)} + \frac{C_{L,q}^{N(1)}}{C_{L,g}^{N(1)}} C_{2,g}^{N(1)} \gamma_{gg}^{N(0)} + 2\beta_0 \frac{C_{L,g}^{N(2)}}{C_{L,g}^{N(1)}} \end{split}$$

3 LOOP : (including heavy flavor) J.B. and A. Guffanti Only one fit parameter. Input distributions measured.

7. Polarized Nucleons

How is the nucleon spin distributed over the partons?

 $S_n = \frac{1}{2} \left[\Delta(u + \bar{u}) + \Delta(d + \bar{d}) + \Delta(s + \bar{s}) \right] + \Delta G + L_q + L_g$

$$S_n = \frac{1}{2}$$

 $\Delta \Sigma = 0.138 \pm 0.082, \quad (0.150 \pm 0.061)$ $\Delta G = 1.026 \pm 0.554, \quad (0.931 \pm 0.679)$

EMC, 1987: THE NUCLEON SPIN IS NOT THE SUM OF THE LIGHT QUARK SPINS.

MEASURE:

POLARIZED PARTON DENSITIES: $\Delta q_i, \Delta G$

How can one access the parton angular momentum ?

POLARIZED HEAVY FLAVOR CONTRIBUTIONS.

• POLARIZED STRUCTURE FUNCTIONS CONTAIN ALSO TWIST 3 CONTRIBUTIONS.

How to unfold these terms ?

POLARIZED PARTON DENSITIES:

pioneering work: Dortmund GRSV, 1996, 2001 Analysis by other groups: AAC (Japan), 2000, 2004 J.B., H. Böttcher, 2002 Leader et al., 2002 Altarelli et al., 1997

NLO:
$$\alpha_s(M_z^2) = 0.113^{+0.10}_{-0.08}$$

J.B., H. Böttcher, 2002

COMPARISON WITH LATTICE MOMENTS:

	Moment	BB, NLO	QCDSF	LHPC/SESAM
Δu_v	0	0.926	0.889 ± 0.029	0.860 ± 0.069
	1	0.163 ± 0.014	0.198 ± 0.008	0.242 ± 0.022
	2	0.055 ± 0.006	0.041 ± 0.009	0.116 ± 0.042
Δd_v	0	-0.341	-0.236 ± 0.027	-0.171 ± 0.043
	1	-0.047 ± 0.021	-0.048 ± 0.003	-0.029 ± 0.013
	2	-0.015 ± 0.009	-0.028 ± 0.002	0.001 ± 0.025
$\Delta u_v - \Delta d_v$	0	1.267	1.14 ± 0.03	1.031 ± 0.081
	1	0.210 ± 0.025	0.245 ± 0.009	0.271 ± 0.025
	2	0.070 ± 0.011	0.069 ± 0.009	0.115 ± 0.049

1st moments: Still problematic.

HEAVY FLAVOR:

- g_1 : Watson, 1982; Vogelsang, 1990
- g_2 : J.B., Ravindran, van Neerven, 2003

SUM RULES AND INTEGRAL RELATIONS: Twist 2:

$$g_2(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{dy}{y} g_1(y,Q^2)$$

Wandzura, Wilczek, 1977; Piccione, Ridolfi 1998; J.B., A. Tkabladze, 1998 : with TM

$$g_3(x,Q^2) = 2x \int_x^1 \frac{dy}{y^2} g_4(y,Q^2)$$

J.B., N. Kochelev, 1996; J.B., A. Tkabladze, 1998 : with TM

TWIST 3:

INCLUDE NUCLEON MASS EFFECTS.

J.B., A. Tkabladze, 1998

$$g_{1}(x,Q^{2}) = \frac{4M^{2}x^{2}}{Q^{2}} \left[g_{2}(x,Q^{2}) - 2\int_{x}^{1} \frac{dy}{y} g_{2}(y,Q^{2}) \right]$$

$$\frac{4M^{2}x^{2}}{Q^{2}} g_{3}(x,Q^{2}) = g_{4}(x,Q^{2}) \left(1 + \frac{4M^{2}x^{2}}{Q^{2}} \right) + 3\int_{x}^{1} \frac{dy}{y} g_{4}(y,Q^{2})$$

$$2xg_{5}(x,Q^{2}) = -\int_{x}^{1} \frac{dy}{y} g_{4}(y,Q^{2})$$

8. $\Lambda_{\rm QCD}$ and $lpha_s(M_Z^2)$

NLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
CTEQ6	0.1165	±0.0065		[1]
MRST03	0.1165	±0.0020	± 0.0030	[2]
A02	0.1171	± 0.0015	±0.0033	[3]
ZEUS	0.1166	± 0.0049		[4]
H1	0.1150	± 0.0017	± 0.0050	[5]
BCDMS	0.110	±0.006		[6]
BB (pol)	0.113	±0.004	+0.009 -0.006	[7]

NNLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
MRST03	0.1153	±0.0020	±0.0030	[2]
A02	0.1143	± 0.0014	± 0.0009	[3]
SY01(ep)	0.1166	± 0.0013		[8]
SY01(<i>v</i> N)	0.1153	± 0.0063		[8]
BBG	0.1139	+0.0026/-0.0028		[9]

BBG: $N_f = 4$: non-singlet data-analysis at $O(\alpha_s^3)$: $\Lambda = 233 \pm 30 \text{ MeV}$

Alpha Collab: $N_f=2$ Lattice; non-pert. renormalization $\Lambda=245\pm16\pm16~{\rm MeV}$

QCDSF Collab: $N_f = 2$ Lattice, pert. reno. $\Lambda = 249 + 13 + 13/-8 - 17$ MeV also other collab., (cf. PDG).

9. Future Avenues

THE FUTURE IS ALWAYS BRIGHT.

HERA:

- Collect high luminosity for $F_2(x,Q^2)$, $F_2^{c\overline{c}}(x,Q^2)$, $g_2^{c\overline{c}}(x,Q^2)$, and measure $h_1(x,Q^2)$.
- Measure : $F_L(x, Q^2)$. This is a key-question for HERA.

RHIC & LHC:

• Improve constraints on gluon and sea-quarks: polarized and unpolarized.

JLAB:

• High precision measurements in the large x domain at unpolarized and polarized targets; supplements HERA's high precision measurements at small *x*.

ELIC:

• High precision measurements in the medium x domain; both unpolarized and polarized

The quest for large luminosity !

.... allows very precise measurements

Example : Flavor Separation of polarized PDF's

- What is the correct value of $\alpha_s(M_z^2)$? $\overline{\mathrm{MS}}$ -analysis vs. scheme-invariant evolution helps. Compare non-singlet and singlet analysis; careful treatment of heavy flavor.[Theory & Experiment]
- Flavor Structure of Sea-Quarks: More studies needed.[All Experiments]
- Revisit polarized data upon arrival of the 3-loop anomalous dimensions; NLO heavy flavor contributions needed.[Theory]
- QCD at Twist 3: $g_2(x, Q^2)$, semi-exclusive Reactions [High Precision polarized experiments, JLAB, EIC]
- Comparison with Lattice Results: α_s , Moments of Parton Distributions, Angular Momentum.
- Calculation of more hard scattering reactions at the 3–loop level: ILC, LHC
- Further perfection of the mathematical tools:
 ⇒ Algorithmic simplification of Perturbation theory in higher orders.
- Even higher order corrections needed ?