DESY, 29 January '04

An Improved Splitting Function for Small-x Evolution

Matching together GLAP and BFKL

G. Altarelli CERN Based on G.A., R. Ball, S.Forte hep-ph/9911273 (NPB <u>575</u>,313) hep-ph/0001157 (lectures) hep-ph/0011270 (NPB <u>599</u>,383) hep-ph/0104246

More specifically on hep-ph/0109178 (NPB <u>621</u>,359) and on hep-ph/0306156 (NPB <u>674</u>,459), hep-ph/0310016

Related work (same physics, similar conclusion, different techniques): Ciafaloni, Colferai, Salam, Stasto [see also Thorne] Our goal is to construct a relatively simple, closed form, improved anomalous dimension $\gamma_l(\alpha,N)$ (or splitting function $P_l(\alpha,x)$)

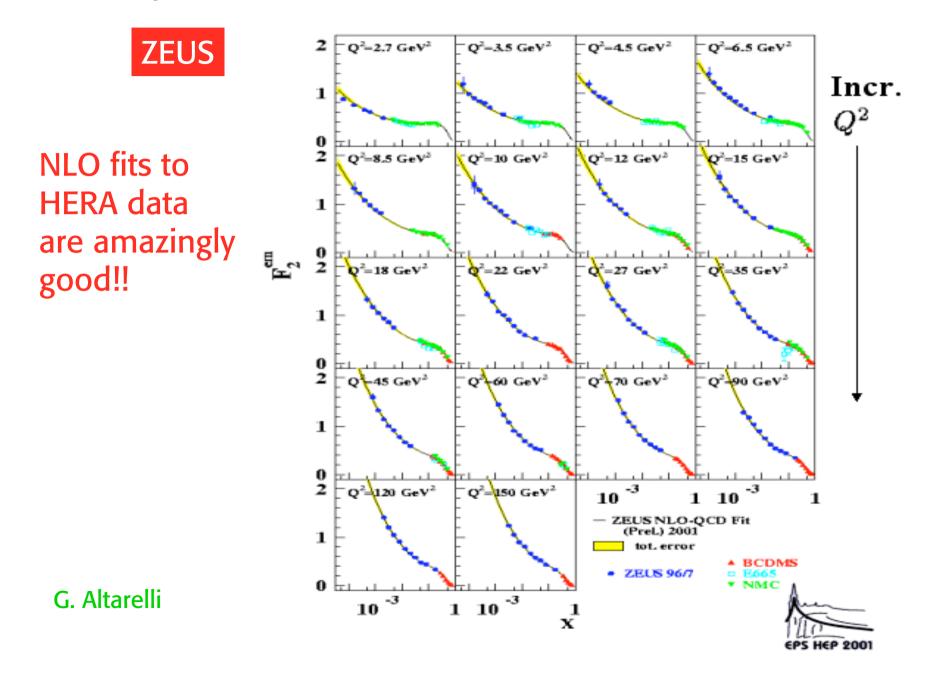
 $P_{I}(\alpha, x)$ should

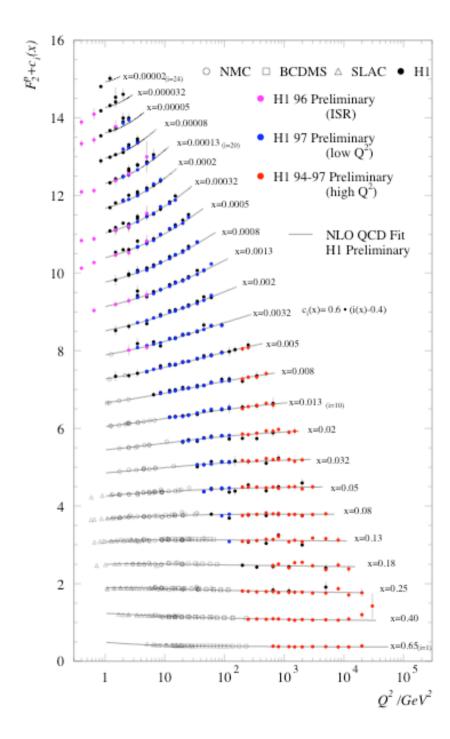
- reduce to perturbative results at large x
- contain BFKL corrections at small x
- include running coupling effects
- be sufficiently simple to be included in fitting codes

and of course

closely reflect the trend of the data

Example of NLO QCD evolution fit to HERA data





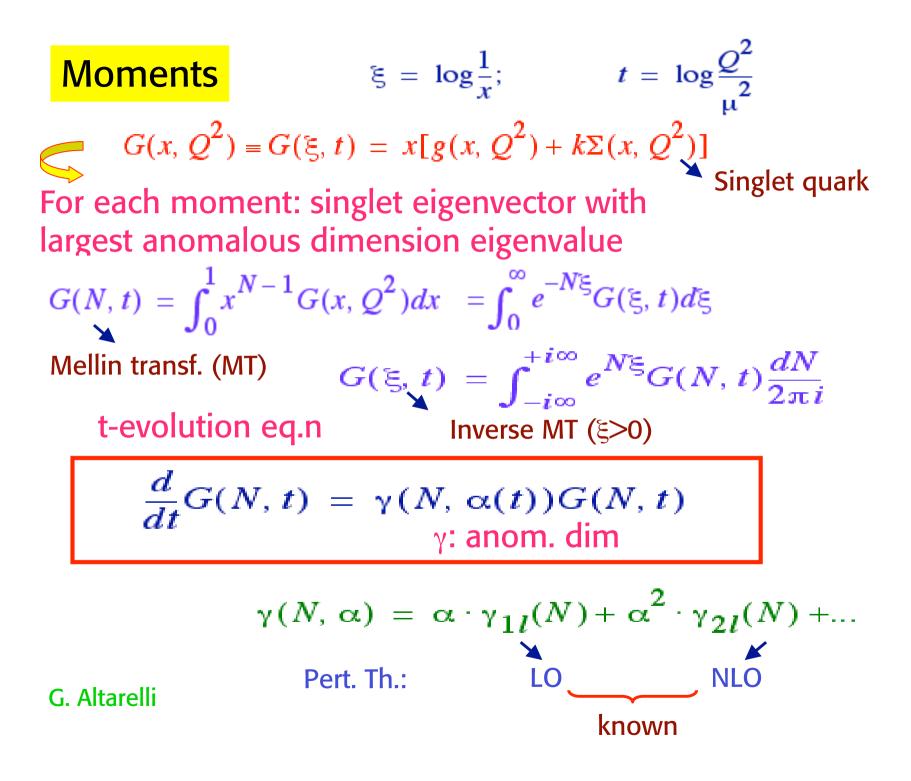
G. Altarelli

H1

At small x the agreement is too good!

Terms in $(\alpha_s \log 1/x)^n$ should be important!!





Recall: $\gamma(N) = \int_0^1 x^N P(x) dx$

$$P(x) = 1/x(\ln 1/x)^n \implies \gamma(N) = n!/N^{n+1}$$

At 1-loop:

$$\alpha \cdot \gamma_{1l}(N) = \alpha \cdot \left[\frac{1}{N} - A(N)\right]$$

This corresponds to the "double scaling" behavior at small x:

$$G(\xi, t) \sim \exp\left[\sqrt{\frac{4n_C}{\pi\beta_0}} \cdot \xi \cdot \frac{\log Q^2 / \Lambda^2}{\log \mu^2 / \Lambda^2}\right] \qquad \qquad \beta(\alpha) = -\beta_0 \alpha^2 + \dots$$

A. De Rujula et al '74/Ball, Forte

Amazingly supported by the data

In principle the BFKL approach provides a tool to control $(\alpha/N)^n$ corrections to $\gamma(N, \alpha)$, that is $1/x(\alpha \log 1/x)^n$ to splitting functions. Define t- Mellin transf.:

$$G(\xi, M) = \int_{-\infty}^{+\infty} e^{-Mt} G(\xi, t) dt$$

with inverse:

$$G(\xi, t) = \int_{-i\infty}^{+i\infty} e^{Mt} G(\xi, M) \frac{dM}{2\pi i}$$

ξ-evolution eq.n (BFKL) [at fixed α]:

$$\frac{d}{d\xi}G(\xi, M) = \chi(M, \alpha)G(\xi, M)$$

with $\chi(M, \alpha) = \alpha \cdot \chi_0(M) + \alpha^2 \cdot \chi_1(M) + ...$
 \bigstar known

Bad behaviour, bad convergence

At 1-loop:

$$\psi(M) = \frac{\Gamma'(M)}{\Gamma(M)}$$

$$\alpha \chi_0(M) = \frac{\alpha n_C}{\pi} \int_0^1 [z^{M-1} + z^{-M} - 2] \frac{dz}{1-z} = \frac{\alpha n_C}{\pi} \cdot [2\psi(1) - \psi(M) - \psi(1-M)]$$
Near M=0:

$$\alpha \chi_0(M) \sim \frac{\alpha n_C}{\pi} [\frac{1}{M} + 2\zeta(3)M^2 + 2\zeta(5)M^4 +]$$

At M=1/2

$$\lambda_0 = \alpha \chi_0 \left(\frac{1}{2}\right) = \frac{\alpha n_C}{\pi} 4 \ln 2 = \alpha c_0 \sim 2.65 \alpha \sim 0.5$$

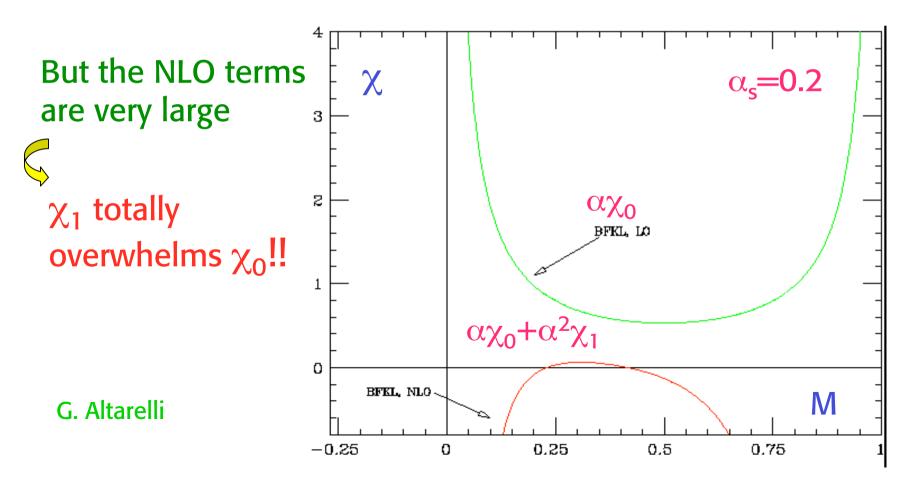
The minimum value of $\alpha \chi_0$ at M=1/2 is the Lipatov intercept:

$$\lambda_0 = \alpha \chi_0 \left(\frac{1}{2}\right) = \frac{\alpha n_C}{\pi} 4 \ln 2 = \alpha c_0 \sim 2.65 \alpha \sim 0.5$$

It corresponds to (for x->0):

 $xP(x) \sim x^{-\lambda 0}$

Too hard, not supported by data



In the region of t and x where both

$$\frac{d}{dt}G(N, t) = \gamma(N, \alpha)G(N, t)$$
$$\frac{d}{d\xi}G(\xi, M) = \chi(M, \alpha)G(\xi, M)$$

are approximately valid, the "duality" relation holds:

$$\chi(\gamma(\alpha, N), \alpha) = N$$

Proof:

Note: γ is leading twist while χ is all twist.

Still the two perturbative exp.ns are related and improve each other.

Non perturbative terms in χ correspond to power or exp. suppressed terms in γ .

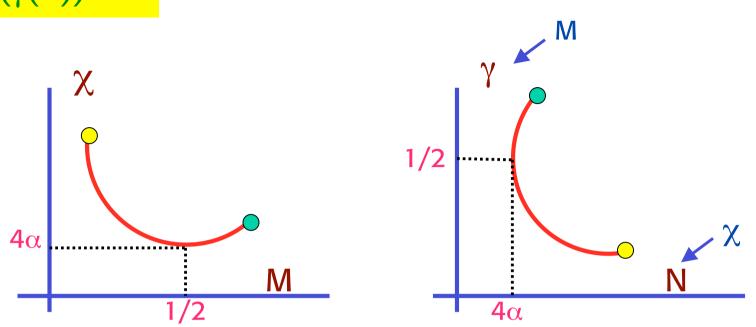
Proof of duality

Take a second Mellin transform:

 $MG(N,M) = \gamma(N)G(N,M) - S(M)$ $MG(N,M) = \chi(M)G(N,M) - T(N)$ $MG(N,M) = \chi(M)G(N,M) - T(N)$ $MG(N,M) = T(N)/(\chi(M)-N)$ $MG(N,M) = T(N)/(\chi(M)-N)$

At fixed N the pole at $\chi(M_0(N)) = N$ fixes the large t behaviour of the inverse Mellin transform G(N,t):

 $G(N,t) \sim \exp[-M_0(N)t]$ or $M_0(N) = \gamma(N)$ $\begin{cases} & \swarrow \\ & \chi(\gamma(N)) = N \\ & \text{Similarly} \end{cases}$ the duality relations



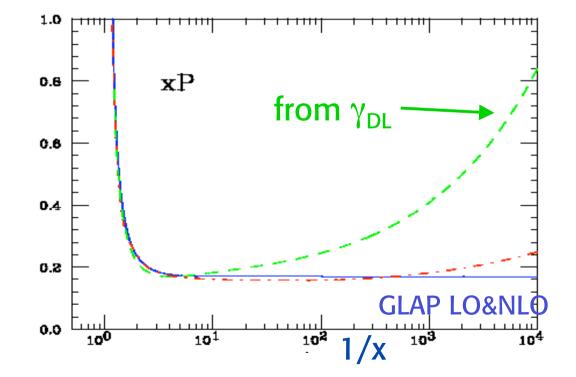
Example: if
$$\chi(M, \alpha) = \alpha \left[\frac{1}{M} + \frac{1}{1-M}\right] \implies$$

 $\alpha \left[\frac{1}{\gamma} + \frac{1}{1-\gamma}\right] = N \implies \gamma = \frac{1}{2} \left[1 \pm \sqrt{1 - \frac{4\alpha}{N}}\right]$

For example at 1-loop: $\chi_0(\gamma_s(\alpha, N)) = N/\alpha$ $\chi_0 \text{ improves } \gamma \text{ by adding a series of terms in } (\alpha/N)^n$: $\chi_0 \rightarrow \gamma_s \left(\frac{\alpha}{N}\right) \qquad \gamma_s \left(\frac{\alpha}{N}\right) = \sum_k c_k \left(\frac{\alpha}{N}\right)^k$

$$\gamma_{DL}(\alpha, N) = \alpha \cdot \gamma_{1l}(N) + \gamma_s\left(\frac{\alpha}{N}\right) + \dots - \text{double count.}$$

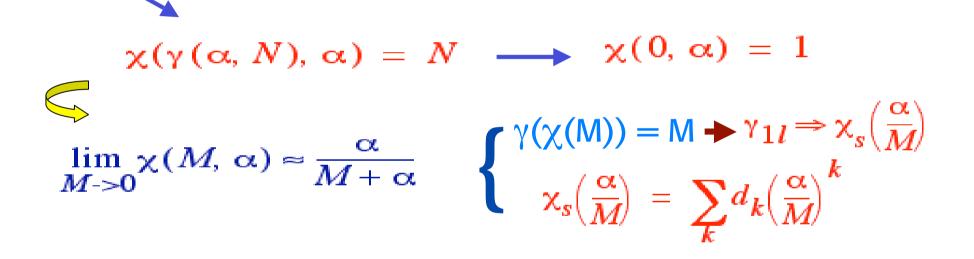
This is the naive result from GLAP+(LO)BFKL The data discard such a large raise at small x



Similarly it is very important to improve χ by using γ_{1l}

Near M=0,
$$\chi_0 \sim 1/M$$
, $\chi_1 \sim -1/M^2$

Duality + momentum cons. ($\gamma(\alpha, N=1)=0$)



$$\chi_{DL}(M, \alpha) = \alpha \cdot \chi_0(M) + \chi_s\left(\frac{\alpha}{M}\right) + \dots \text{ -double count.}$$

Double Leading Expansion

$$\gamma(N, \alpha) = \alpha \cdot \gamma_{1l}(N) + ... \sim \alpha \cdot \left[\frac{1}{N} - A(N)\right]$$

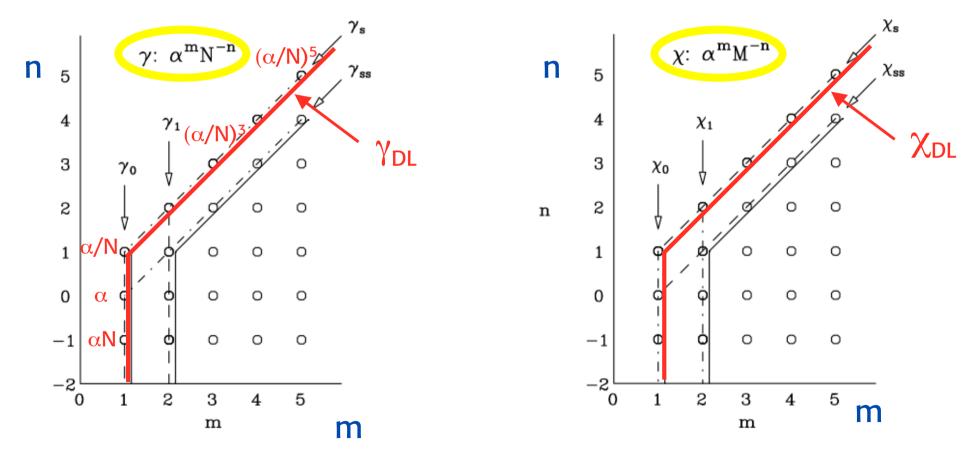
Momentum conservation: $\gamma(1, \alpha)=0 \longrightarrow A(1)=1$

Duality:
$$\gamma(\chi(M)) = M \longrightarrow \alpha \cdot \left[\frac{1}{\chi} - A(\chi)\right] = M \longrightarrow$$

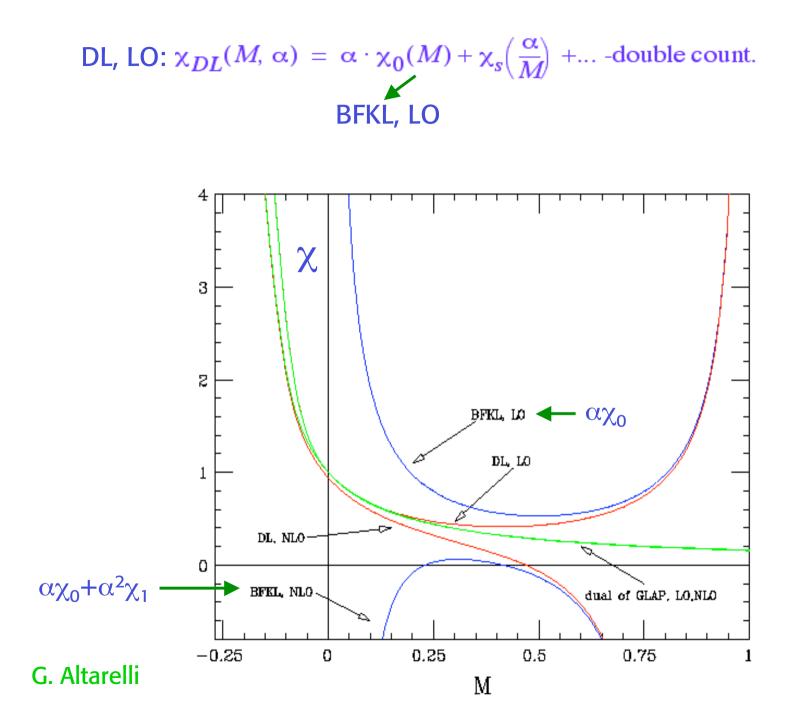
$$\chi = \frac{\alpha}{M + \alpha A(\chi)} \qquad \chi(M \sim 0) \sim \frac{\alpha}{M + \alpha A(1)} \sim \frac{\alpha}{M + \alpha}$$
$$\chi_{DL}(M, \alpha) = \alpha \cdot \chi_0(M) + \chi_s \left(\frac{\alpha}{M}\right) + \dots \text{ -double count.}$$
$$\chi_0(M) = \alpha \cdot \left[\frac{1}{M} + 0(M^2)\right]$$

$$\gamma_{DL}(\alpha, N) = \alpha \cdot \gamma_{1l}(N) + \gamma_s \left(\frac{\alpha}{N}\right) + \dots \text{-double count.}$$

 $\chi_{DL}(M, \alpha) = \alpha \cdot \chi_0(M) + \chi_s \left(\frac{\alpha}{M}\right) + \dots \text{-double count.}$



G. Altarelli



A considerable improvement is obtained by including running coupling effects

Recall that the x-evolution equation was at fixed $\boldsymbol{\alpha}$

$$\frac{d}{d\xi}G(\xi, M) = \chi(M, \alpha)G(\xi, M)$$

In the following:

- Summary of general results
- Airy approximation
- Application to our problem

The implementation of running coupling in BFKL is not simple. In M-space α becomes an operator

$$\alpha(t) = \frac{\alpha}{1 + \beta_0 \alpha t} \Rightarrow \frac{\alpha}{1 - \beta_0 \alpha \frac{d}{dM}}$$

In leading approximation:

$$\frac{d}{d\xi}G(\xi, M) = \chi(M, \alpha)G(\xi, M)$$

$$\int \frac{d}{d\xi}G(\xi, M) = \frac{\alpha}{1 - \beta_0 \alpha} \chi_0(M)G(\xi, M)$$

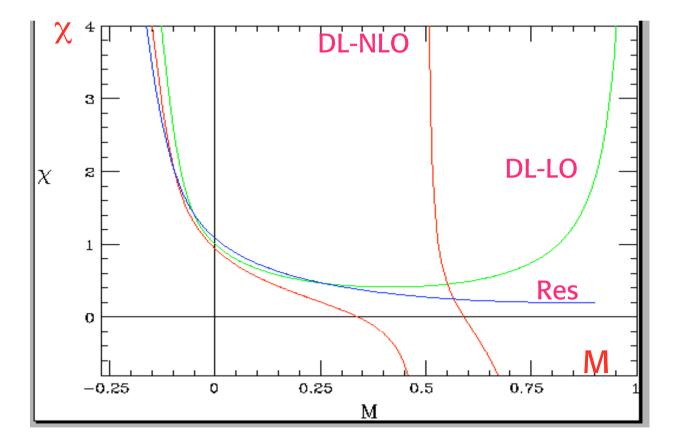
A perturbative expansion in β_0 leads to validity of duality with modified χ and γ :

$$\Delta \chi_{1}(M) = \beta_{0} \frac{\chi_{0}''(M)\chi_{0}(M)}{2\chi_{0}'(M)} \qquad \Delta \gamma_{ss}(N) = -\beta_{0} \frac{\chi_{0}''(\gamma_{s})\chi_{0}(\gamma_{s})}{2\chi_{0'}^{2}(\gamma_{s})}$$

But this expansion fails near M=1/2: $\chi_0'(1/2)=0$

$$\Delta \chi_1(M) = \beta_0 \frac{\chi_0''(M)\chi_0(M)}{2\chi_0'(M)}$$

At M=1/2 χ_0 has a minimum and $\Delta \chi_1$ is singular (and also $\Delta \gamma_{ss}$). We shall see it is just an artifact of pert. exp.



By taking a second MT the equation can be written as [F(M) is a boundary condition]

$$\left(1-\beta_0 \alpha \frac{d}{dM}\right) NG(N,M) + F(M) = \alpha \chi_0(M)G(N,M)$$

It can be solved iteratively

$$G(N, M) = \frac{F(M)}{N - \alpha \chi_0(M)} + \frac{\alpha \beta_0}{N - \alpha \chi_0(M)} \frac{d}{dMN} \frac{F(M)}{N - \alpha \chi_0(M)} + \dots$$

or in closed form:

$$G(N, M) = H(N, M) +$$

+ $\int_{M_0}^{M} dM \exp\left[\frac{M-M}{\beta_0 \alpha} - \frac{1}{\beta_0 N} \int_{M}^{M} \chi_0(M') dM''\right] \frac{F(M)}{\beta_0 \alpha N}$

H(*N*,*M*) is a homogeneous eq. sol. that vanishes faster than all pert. terms and can be dropped.

The following properties can be proven:

- From G(N,M) we can obtain G(N,t) and evaluate it by saddle point expansion. The perturbative G(N,t) is reproduced and satisfies duality (in terms of modified χ and γ according to the perturbative results singular at χ'(1/2)=0) and factorisation (no t-dep. from the boundary condition).
- From G(N,M) we can get G(ξ ,M). This presents unphysical oscillations when χ >0 for all M.

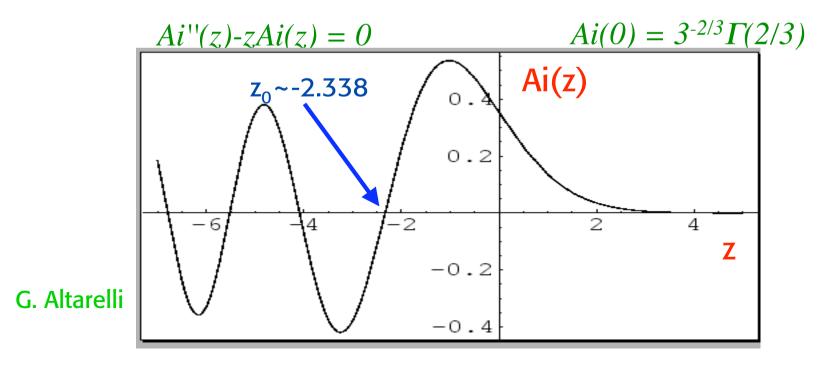
These problems can be studied by using the Airy expansion: The asymptotics is fixed by the behaviour of χ near the minimum, where a quadratic form is taken:

Lipatov; Collins,Kwiecinski; Thorne; Ciafaloni, Taiuti,Mueller

$$\chi_{eff}(M) = c + \frac{1}{2}k\left(M - \frac{1}{2}\right)^2$$

G.A., R. Ball, S.Forte, hep-ph/0109178 (NPB 621,359)

For a quadratic kernel the explicit solution is $G(N, t) = K(N) \exp \frac{1}{2\beta_0 \alpha(t)} \cdot Ai[z(\alpha(t), N)]$ where $z(\alpha(t), N) = \left(\frac{2\beta_0 N}{k}\right)^{\frac{1}{3}} \cdot \frac{1}{\beta_0} \cdot \left[\frac{1}{\alpha(t)} - \frac{c}{N}\right]$ $K(N) = \exp \frac{-1}{2\beta_0 \alpha} \cdot \left(\frac{2\beta_0 N}{k}\right)^{\frac{1}{3}} \cdot \frac{1}{\pi N}$



From
$$G(N, t) = K(N) \exp \frac{1}{2\beta_0 \alpha(t)} \cdot Ai[z(\alpha(t), N)]$$

one obtains G(x,t) by inv. MT

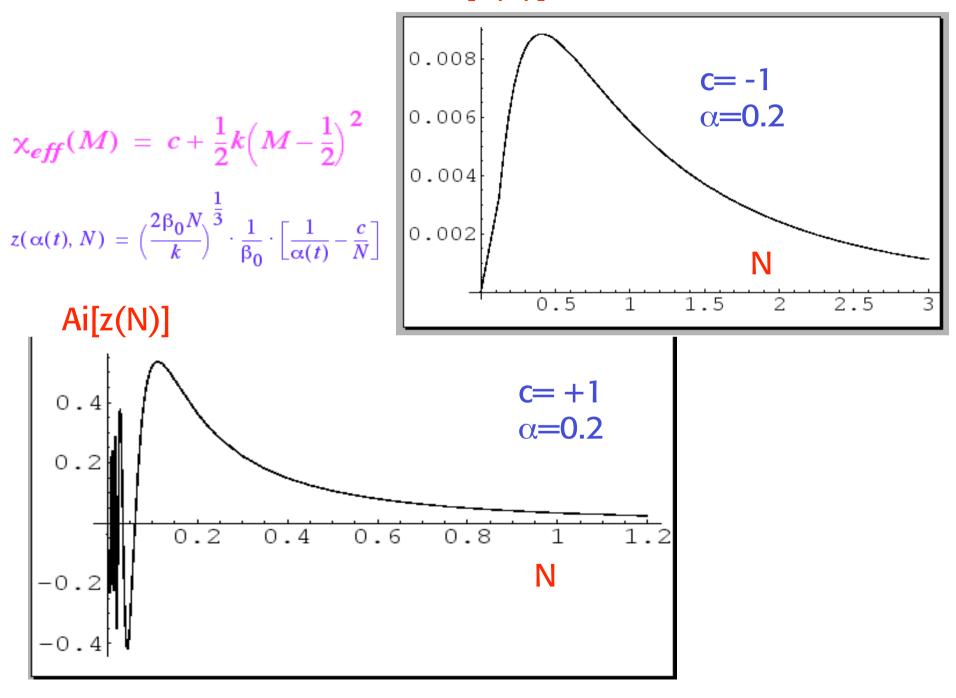
$$G(\xi, t) = \int_{-i\infty}^{+i\infty} e^{N\xi} G(N, t) \frac{dN}{2\pi i}$$

The asymptotics is dominated by the saddle condition:

$$\xi = -\frac{1}{Ai[z(\alpha(t), N)]} \cdot \frac{d}{dN} Ai[z(\alpha(t), N)]$$

For c>0 at not too large ξ this is satisfied at large N. When ξ increases N gets smaller. Then oscillations start, d/dN changes sign and the real saddle is lost. G(ξ ,t) starts oscillating, in agreement with the general analysis.

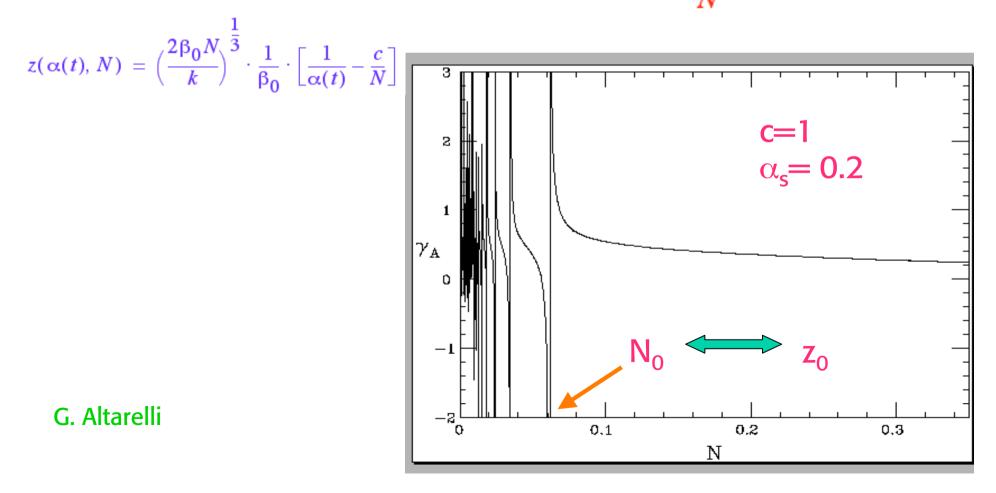
Ai[z(N)]



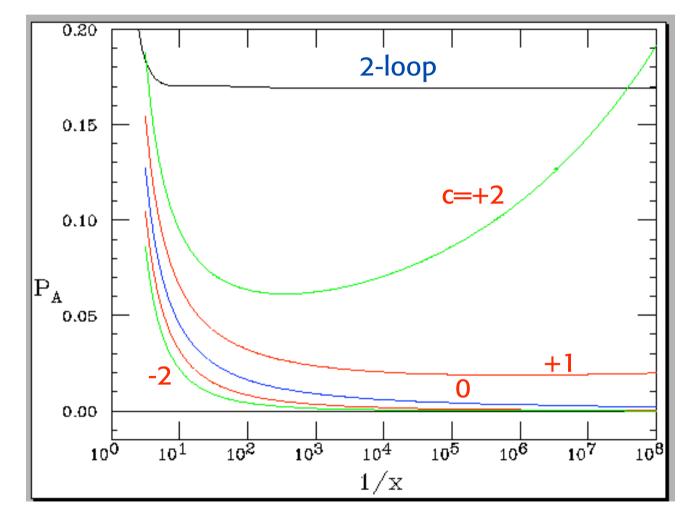
The dual anom. dim. γ_A is given by

$$\gamma_{A}(\alpha(t), N) = \frac{d}{dt} \log G(N, t) = \frac{1}{2} + \left(\frac{2\beta_{0}N}{k}\right)^{\frac{1}{3}} \frac{Ai'(z)}{Ai(z)}$$

$$\xrightarrow{z \text{ large}} \frac{1}{2} - \sqrt{\frac{2}{k}} \left(\frac{N}{\alpha(t)} - c\right) - \frac{1}{4} \cdot \frac{\beta_{0}\alpha}{1 - \frac{\alpha}{N}c} + \dots$$



The splitting function is completely free of oscillations at all x!! The oscillations get factorised into the initial condition



The effect of running on χ is a softer small-x behaviour

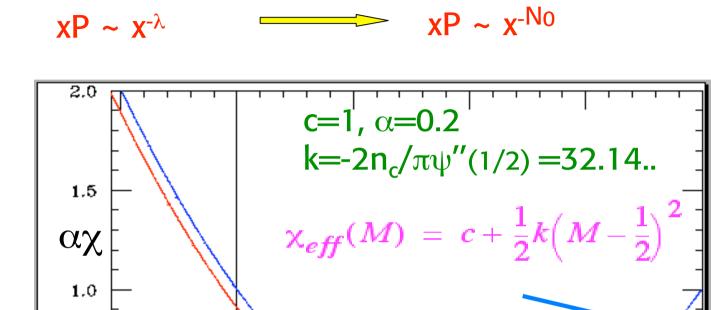
No

0

0.25

0.5

Μ



αС

0.75

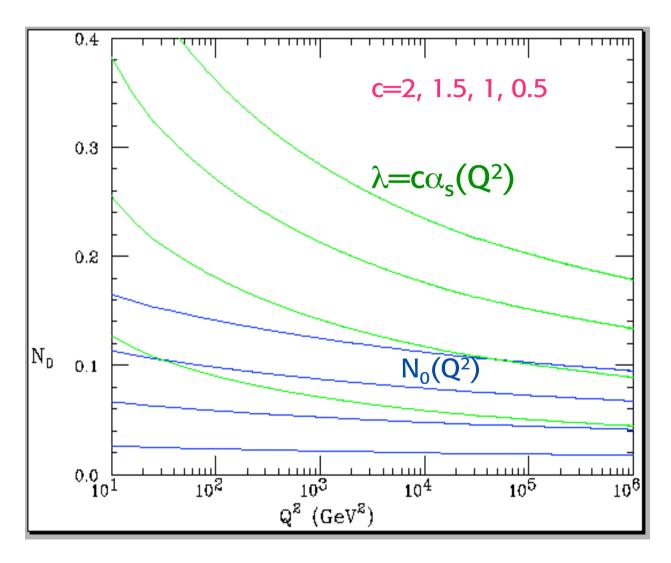
G. Altarelli

0.5

0.0

-0.25

As an effect of running, the small-x asymptotics is much softened:



The Airy result is free of the perturbative β_0 singularities.

At NLL order we can add the full γ_A and subtract its large N limit:

$$\chi_{0} \rightarrow \gamma_{s} \qquad \chi_{1} \rightarrow \gamma_{ss}$$

$$\gamma(\alpha, N) \approx \gamma_{s} \left(\frac{\alpha}{N}\right) + \alpha \gamma_{ss} \left(\frac{\alpha}{N}\right) + \alpha \Delta \gamma_{ss} \left(\frac{\alpha}{N}\right) + \gamma_{A}(\alpha, N) - \frac{1}{2} + \sqrt{\frac{2}{k} \left(\frac{N}{\alpha} - c\right)} + \frac{1}{4} \cdot \frac{\beta_{0} \alpha}{1 - \frac{\alpha}{N} c}$$

The last term cancels the sing. of $\alpha \Delta \gamma_{ss}$ (N= αc corresponds to M=1/2)

The goal of our recent work is to use these results to construct a relatively simple, closed form, improved anom. dim. $\gamma_I(\alpha,N)$ or splitting funct.n $P_I(\alpha,x)$

G.A., R. Ball, S.Forte, hep-ph/ 0306156 (NPB <u>674</u>,459), 0310016

 $P_{I}(\alpha, x)$ should

- reduce to pert. result at large x
- contain BFKL corr's at small x
- include running coupling effects (Airy)
- be sufficiently simple to be included in fitting codes and of course
- closely follow the trend of the data G. Altarelli

Improved anomalous dimension

1st iteration: optimal use of $\gamma_{11}(N)$ and $\chi_0(M)$

$$\gamma_{I}(\alpha, N) = \alpha \gamma_{1I}(N) + \gamma_{s}\left(\frac{\alpha}{N}\right) - \frac{\alpha n_{c}}{\pi N} + \gamma_{A}(\alpha, N) - \frac{1}{2} + \sqrt{\frac{2}{k_{0}}\left(\frac{N}{\alpha} - c_{0}\right)} + \frac{1}{4}\beta_{0}\alpha - \text{mom sub}$$

Properties:

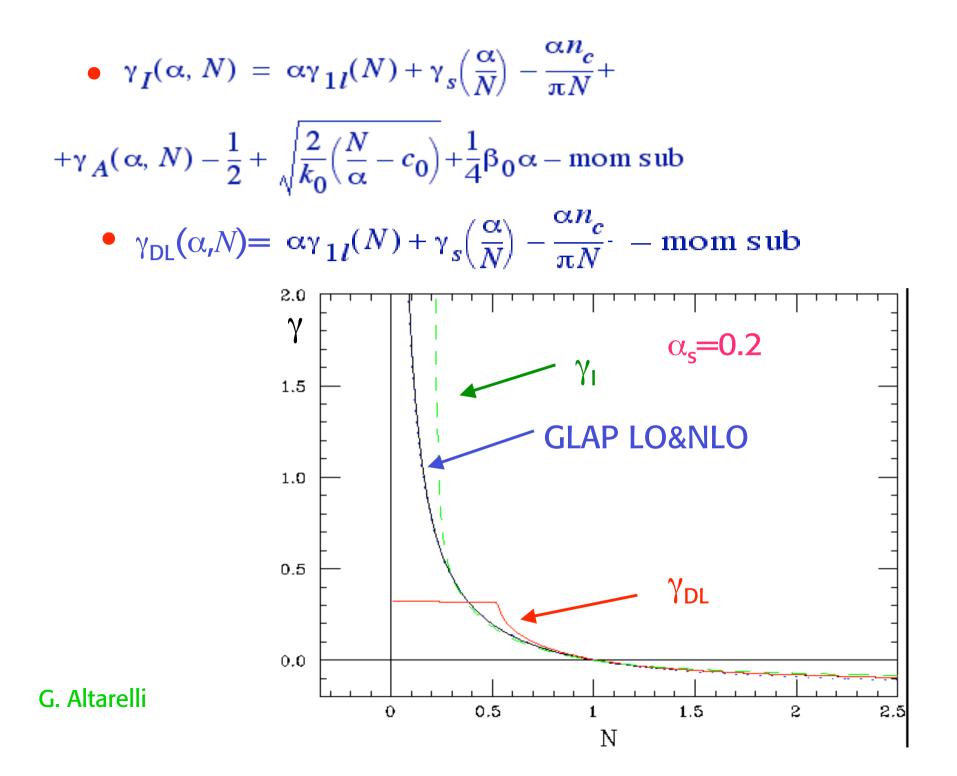
Pert. Limit
$$\alpha \rightarrow 0$$
, N fixed
 $\gamma_{I}(\alpha, N) \longrightarrow \alpha \gamma_{1I}(N) + O(\alpha^{2})$

• Limit α ->o , α /N fixed

$$\gamma_{I}(\alpha, N) \longrightarrow \alpha \gamma_{1l}(N) + \gamma_{s}\left(\frac{\alpha}{N}\right) - \frac{\alpha n_{c}}{\pi N} + O(\alpha \alpha/N)$$

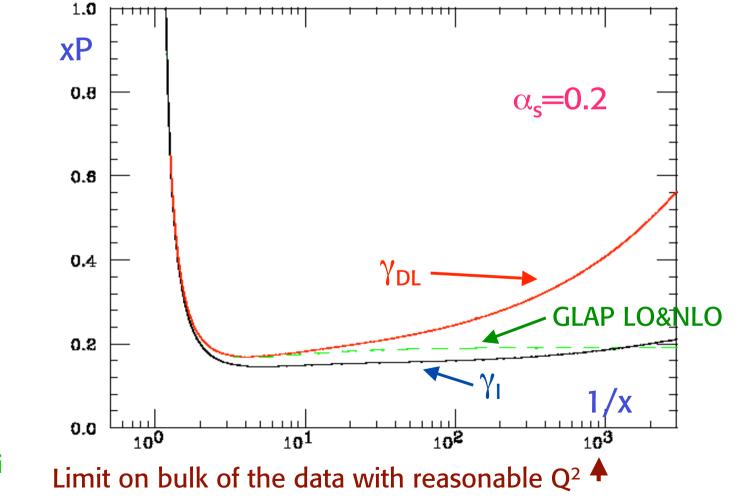
$$\begin{array}{c} \alpha \gamma_{1l}(N) \longrightarrow \text{Pole in 1/N} \\ \gamma_{s}(\overset{\alpha}{N}) \longrightarrow \text{Cut with branch in } \alpha \text{ } c_{0} \end{array}$$

the Airy term cancels the cut and introduces a pole at N=N₀

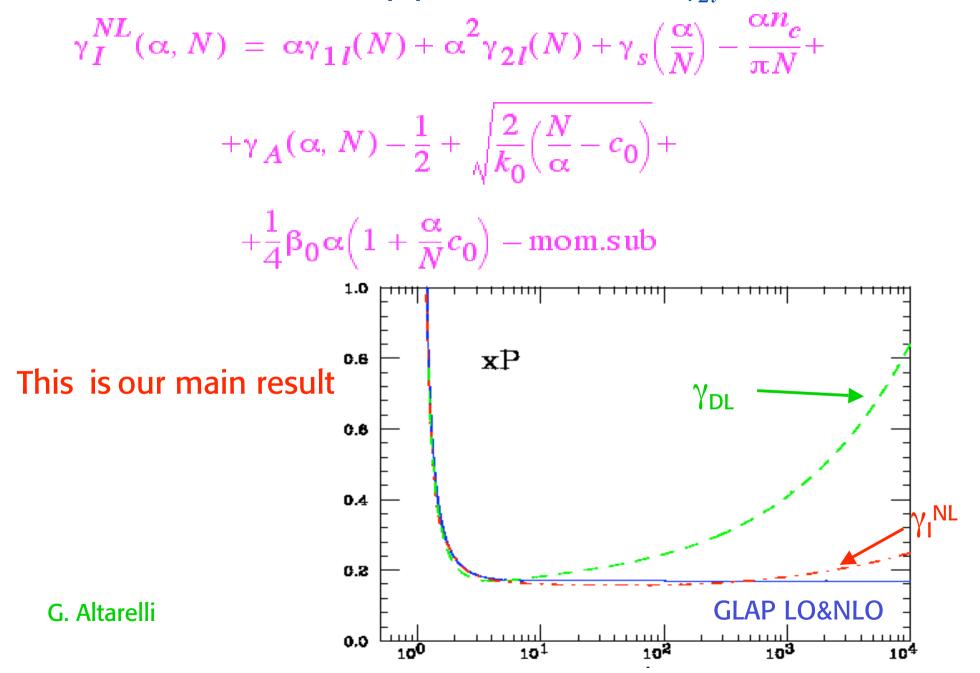


Here is the same plot for the corresponding splitting functions.

Note: for α_s =0.2 the pole in GLAP is ~0.191/N while the pole in γ_1 is ~0.014/(N-N₀) (only visible at very small x)



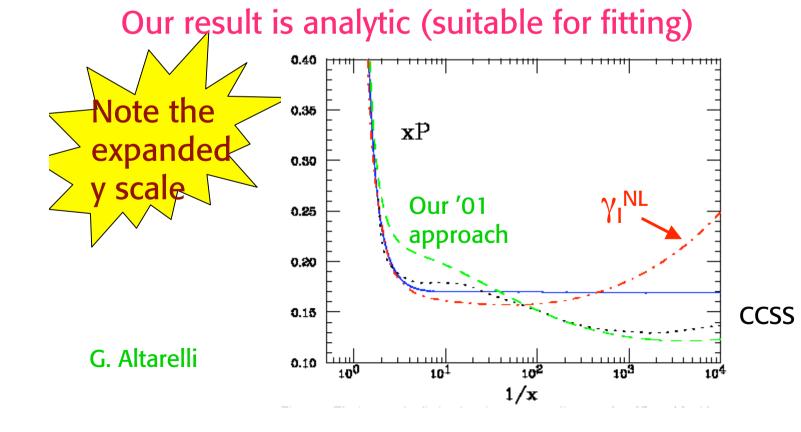
We can add the 2-loop perturbative result γ_{2l} :



Our most important competitors: Ciafaloni, Colferai, Salam, Stasto hep-ph/0307188. Also Thorne

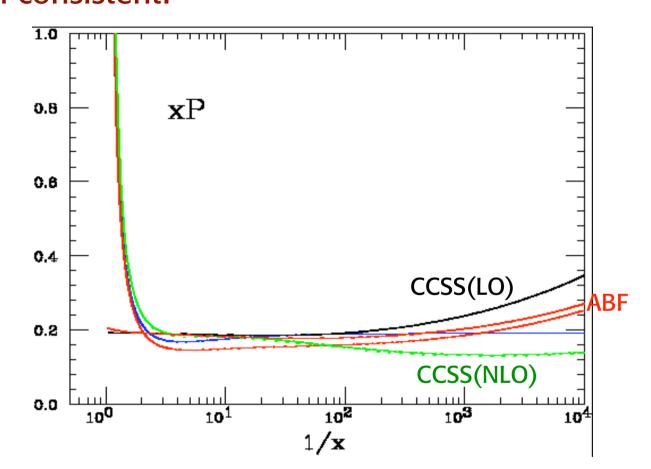
Same physics: regularisation of M=0 pole in χ (and of M=1 pole using symmetrisation) and running coupling effects

Different resummation technique, no Airy expansion (num. sol of evol eqn.), and they include χ_1 but not γ_{2l}



In '01 we introduced N₀ as a parameter and fitted it

Here we compare LO with LO Well consistent!



The χ_1 leftover terms have ambiguities as large as the terms themselves The deviations for $1/x \sim 10^{-2}$ - 10^{-3} could be exp. visible (D. Haidt)

Summary and Conclusion

- BFKL with running coupling is fully compatible with RGE t evolution, factorisation and duality.
- Using the Airy solution we have seen that the splitting functions are completely free of unphysical oscillations (can be factorised in the initial condition at t₀).
- The Airy solution can be used to resum the perturbative singularities in the β_0 expansion

G. Altarelli

- We use these results to construct an improved an. dim. that reduces to the pert. result at large x and incorporates BFKL with running coupling effects at small x.
- Properly introducing running coupling effects in the LO softens the asymptotic small x behaviour as indicated by the data.

A clearer picture of the matching of GLAP and BFKL emerges