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Our goal is to construct a relatively simple, closed form, 
improved anomalous dimension γI(α,N) 
(or splitting function PI(α,x))

PI(α,x) should

• reduce to perturbative results at large x

• contain BFKL corrections at small x

• include running coupling effects

• be sufficiently simple to be included in fitting codes

• closely reflect the trend of the data

and of course
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Example of NLO QCD evolution fit to HERA data

NLO fits to
HERA data
are amazingly
good!!

ZEUS
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H1
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At small x the agreement is too good!

Terms in (αslog1/x)n should be important!!

For Q2 values
3, 10, 102,103 GeV2

αslog1/x can be
as large as 
4.3, 3.0, 1.2, 0.6
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Moments

For each moment: singlet eigenvector with
largest anomalous dimension eigenvalue

Singlet quark

Inverse MT (ξ>0)t-evolution eq.n

γ: anom. dim

known

Pert. Th.: LO NLO

Mellin transf. (MT)
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Recall:

P(x) = 1/x(ln1/x)n γ(N) = n!/Nn+1

At 1-loop:

This corresponds to the “double scaling” behavior at
small x:

β(α) = −β0α2+...

A. De Rujula et al ‘74/Ball, Forte

Amazingly supported by the data
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In principle the BFKL approach provides a tool to control 
(α/N)n corrections to γ(N, α), 
that is 1/x(α log1/x)n to splitting functions.
Define t- Mellin transf.:

with inverse:

ξ-evolution eq.n (BFKL) [at fixed α]:

with
known

Bad behaviour, bad convergence
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At 1-loop:

Near M=0:

At M=1/2
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χ

M

αs=0.2

αχ0+α2χ1

αχ0

The minimum value of αχ0 at M=1/2 is the Lipatov intercept:

It corresponds to (for x->0):
xP(x)~x-λ0 Too hard, not supported by data

χ1 totally 
overwhelms χ0!!

But the NLO terms
are very large
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In the region of t and x where both

are approximately valid, the "duality” relation holds:

Note: γ is leading twist while χ is all twist.
Still the two perturbative exp.ns are related and improve 
each other.
Non perturbative terms in χ correspond to power or
exp. suppressed terms in γ.

Proof:
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Proof of duality

Take a second Mellin transform:

MG(N,M) = γ(N)G(N,M) - S(M)
NG(N,M) = χ(M)G(N,M) - T(N)

Boundary terms from
integration by parts

G(N,M) = T(N)/(χ(M)-N)

At fixed N the pole at χ(M0(N)) = N fixes the large t 
behaviour of the inverse Mellin transform G(N,t): 

G(N,t) ~ exp[-M0(N)t] or M0(N) = γ(N)

χ(γ(N)) = N
the duality relations

Similarly γ(χ(M)) = M
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χ γ

M N

M

χ

χ(γ(N)) = N

Example: if

4α

1/2 4α

1/2
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For example at 1-loop: χ0(γs(α,N))=N/α

χ0  improves γ by adding a series of terms in (α/N)n:

χ0 ->

1/x

from γDL

GLAP LO&NLO

1/x

This is the naive
result from
GLAP+(LO)BFKL

The data discard
such a large raise
at small x
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Similarly it is very important to improve χ by using γ1l.

Near M=0, χ0~1/M, χ1 ~ -1/M2

Duality + momentum cons. (γ(α,N=1)=0)

{

Double Leading Expansion

γ(χ(M)) = M
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Momentum conservation: γ(1, α)=0 A(1)=1

Duality: γ(χ(M)) = M
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n n

α/N

α

αN

(α/N)3

(α/N)5

m m

γDL
χDL
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χ

DL, LO:

BFKL, LO

αχ0+α2χ1

αχ0
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A considerable improvement is obtained by including 
running coupling effects

Recall that the x-evolution equation was at fixed α

In the following:

• Summary of general results
• Airy approximation
• Application to our problem
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The implementation of running coupling in BFKL is not simple.
In M-space α becomes an operator

In leading approximation:

A perturbative expansion in β0 leads to validity of duality 
with modified χ and γ:

But this expansion fails near M=1/2: χ0'(1/2)=0 
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DL-LO

DL-NLO

Res

At M=1/2 χ0 has a minimum and Δχ1 is singular 
(and also Δγss). We shall see it is just an artifact of pert. exp.

χ

M
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By taking a second MT the equation can be written as 
[F(M) is a boundary condition]

It can be solved iteratively

or in closed form:

H(N,M) is a homogeneous eq. sol. that vanishes faster 
than all pert. terms and can be dropped.
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The following properties can be proven:

• From G(N,M) we can obtain G(N,t) and evaluate it by
  saddle point expansion. The perturbative G(N,t) is reproduced
  and satisfies duality (in terms of modified χ and γ according to

the perturbative results singular at χ'(1/2)=0)
  and factorisation    (no t-dep. from the boundary condition).

• From G(N,M) we can  get G(ξ,M). This presents  unphysical
oscillations when χ>0 for all M.

These problems can be studied by using the Airy expansion:
The asymptotics is fixed by the behaviour of χ near the
minimum, where a quadratic form is taken:

Lipatov; Collins,Kwiecinski;
Thorne; Ciafaloni, Taiuti,Mueller

G.A., R. Ball, S.Forte, hep-ph/0109178 (NPB 621,359)
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For a quadratic kernel the explicit solution is

where

Ai''(z)-zAi(z) = 0 Ai(0) = 3-2/3Γ(2/3)
Ai(z)

z

z0~-2.338
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From

one obtains G(x,t) by inv. MT

The asymptotics is dominated by the saddle condition:

For c>0 at not too large ξ this is satisfied at large N. When ξ
increases N gets smaller. Then oscillations start, d/dN changes
sign and the real saddle is lost.
G(ξ,t) starts oscillating, in agreement with the general analysis.
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Ai[z(N)]

N

c= -1
α=0.2

N

Ai[z(N)]

c= +1
α=0.2
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The dual anom. dim. γA is given by 

z large

N0 z0

+...

c=1
αs= 0.2
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The splitting function is completely free of oscillations at all x!!

2-loop

c=+2

+1
0-2

The oscillations get factorised into the initial condition
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The effect of running on χ is a softer small-x behaviour

c=1, α=0.2
k=-2nc/πψ’’(1/2) =32.14..

αcN0

xP ~ x-λ xP ~ x-N0

αχ
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c=2, 1.5, 1, 0.5

λ=cαs(Q2)

N0(Q2)

As an effect of running, the small-x asymptotics is much softened:

xP ~ x-λ xP ~ x-N0
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The Airy result is free of the perturbative β0 singularities.

At NLL order we can add the full γA and subtract its large N limit:

The last term cancels the sing. of αΔγss
(N=αc corresponds to M=1/2)

χ0 -> γs χ1 -> γss



G. Altarelli

The goal of our recent work is to use these results to construct
a relatively simple, closed form, improved anom. dim. γI(α,N)
or splitting funct.n Pl(α,x) 

PI(α,x) should

• reduce to pert. result at large x

• contain BFKL corr’s at small x

• include running coupling effects (Airy)

• be sufficiently simple to be included
in fitting codes

• closely follow the trend of the data

and of course

G.A., R. Ball, S.Forte, hep-ph/ 0306156 (NPB 674,459), 0310016
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Improved anomalous dimension

1st iteration: optimal use of γ1l(N) and χ0(M)

Properties: • Pert. Limit α->o , N fixed
o(α2)

• Limit α->o , α /N fixed

o(α α/N)

Pole in 1/N
Cut with branch in α c0 

the Airy term cancels the cut and introduces a pole at N=N0
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γ
γI

GLAP LO&NLO

γDL

αs=0.2

γDL(α,N)=

•

•
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xP

1/x

GLAP LO&NLO

γI

γDL

αs=0.2

Here is the same plot for the corresponding splitting functions.

Note: for αs=0.2 the pole in GLAP is ~0.191/N
while the pole in γI is ~0.014/(N-N0)
(only visible at very small x)

Limit on bulk of the data with reasonable Q2
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1/x

γDL

GLAP LO&NLO

γI
NL

We can add the 2-loop perturbative result γ2l: 

(NLO GLAP + LO BFKL)

This  is our main result
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Our most important competitors:
Ciafaloni, Colferai, Salam, Stasto hep-ph/0307188.  Also Thorne

Same physics: regularisation of M=0 pole in χ (and of M=1
pole using symmetrisation) and running coupling effects

Different resummation technique, no Airy expansion (num.
sol of evol eqn.), and they include χ1 but not γ2l

CCSS

Our ’01 
approach

Note the
expanded
y scale

Our result is analytic (suitable for fitting)
In ‘01 we
introduced
N0 as a
parameter
and fitted itγI

NL
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Here we compare LO with LO

CCSS(LO)
ABF

Well consistent!

The χ1 leftover terms have ambiguities as large as the terms
themselves

CCSS(NLO)

The deviations for 1/x~10-2-10-3 could be exp. visible
(D. Haidt)
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Summary and Conclusion

• BFKL with running coupling is fully compatible with RGE
t evolution, factorisation and duality.

• Using the Airy solution we have seen that the splitting functions
are completely free of unphysical oscillations
(can be factorised in the initial condition at t0).

• The Airy solution can be used to resum the perturbative
singularities in the β0 expansion

• We use these results to construct an improved an. dim. that
reduces to the pert. result at large x and incorporates BFKL with
running coupling effects at small x.

• Properly introducing running coupling effects in the LO
softens the asymptotic small x behaviour as indicated by the data.

A clearer picture of the matching of GLAP and BFKL
emerges


