

ZEUS Status Report

Kunihiro Nagano on behalf of the ZEUS Collaboration

at the 61st Physics Research Committee Meeting, 11/May/2006

Contents

I. Data taking and runningII. Physics highlightsIII. Low-energy running

I. Data taking and running

- Recent running conditions
- Improvement in the detector understanding
 - -- New MVD alignment

Recent ZEUS runs

- HERA could deliver and ZEUS could collect > 1 pb⁻¹ / day
- ZEUS efficiency with HV on \sim 75%

→ ZEUS DAQ and detectors are operating well including the Forward Straw Tube Tracker (STT)

- HERA delivered luminosity as a function of days of running
 - Thank you for the excellent performance of HERA in 2006

► ZEUS gated luminosity and efficiency

• Whole procedure was completed successfully.

 \rightarrow No interference problem to solenoid operation observed.

 \rightarrow STT is on for 06 e- runs, and is taking data.

STT cooling upgrade

- During the shutdown Nov.05 to Jan.06, STT was once removed to upgrade its cooling system, and then was reinstalled
 - -- Insufficient STT cooling interfered solenoid operation
 - -- Thus, STT was off for 04-05 e- runs

ZEUS operation

- HERA delivered : 58.75 pb⁻¹ ZEUS gated with HV on : 41.22 pb⁻¹
- ZEUS inefficiency is mostly due to HV trips for CTD.
- Suffering from proton background spikes, some caused by outside construction work (parking lot near H1 hall)
- \rightarrow Less spiky proton beam is desirable
- On 2.May, there was a vacuum leak at the absorber 4 (SR11)
- \rightarrow Luminosity back on last Friday (5/May)
- → Electron beam-gas background condition is very good

Proton bkgd

Micro Vertex Detector (MVD) alignment

- Had been aligned using cosmic data
- With large statistics of physics data and detailed analysis, getting to know that there is still some room to improve alignment:

• Alignment using "Millepede": Linear least square fit with a large number of parameters

-- Alignment parameters and tracks are fitted simultaneously

* Cosmic \rightarrow ep data

-- Large amount of data available

- * Ladder by Ladder \rightarrow Sensor by Sensor
 - -- Was 6 parameters(3pos+3rot.) for each ladder
 - -- Now 5 parameters for each sensor

Track Azimuth (degrees)

Impact parameter to beam spot

- -- Big improvement from cosmic alignment
- \rightarrow MC and data agreement greatly improved

MVD alignment impacts to heavy-flavor tagging

• Decay length significance: $L/\sigma(L)$

► Application to $D^+ \rightarrow \pi^+ \pi^- K^-$ (+c.c.)

II. Physics Highlights

• HERA-II = With large luminosity of polarized lepton beams, using improved tracking detectors

- -- High-Q² NC/CC
- -- EW+QCD fits
- -- Search for high Pt lepton events with missing Pt

• HERA-I = With mature detector understanding

- -- Di-Jet in DIS and α_s determination
- -- Multi-jet production in photoproduction
- -- Light nuclei production in DIS

EW physics with polarized lepton beams

- Polarization = Asymmetry of Helicity states: $P = (N_R - N_L) / (N_R + N_L)$
- Helicity = Chirality (if mass is neglected)
- \rightarrow By means of Pol, chiral structure can be tested.
- RH != LH is: parity violation
- ► Charged-current DIS (ep $\rightarrow \nu X$)

- "Pure" Weak
- \rightarrow Chiral structure of weak int. is directly visible as a function of Polarization
- Weak = "100% parity violated" (no RH)
 - → Zero cross section @ Pol=1 (-1 for e+)
 - → σ (Pol) = (1+Pol) σ (Unpol)

► Neutral-current DIS (ep \rightarrow eX)

Weak's parity violating effect through γ-Z interference and pure Z → visible only at large Q²
Such γ-Z and Z terms contain EW parameters, i.e. quark couplings to Z, sin θ_W,M_Z

CC cross section vs. polarization

- ▶ Finalized e⁺ 2003-04 analysis → Will be published (Accepted by PLB)
 ▶ Have analyzed full e⁻ data taken until 2005 [New at DIS06]
 - \rightarrow ~120 pb⁻¹ for e- (~8 times more $\leftarrow \rightarrow$ 16 pb⁻¹ at HERA-I)

• Consistent with RH=0

• W_{RH} mass limit was derived as 180 GeV (assuming RH/LH CC couplings are same). Error dominated by polarization uncertainty

NC cross section vs. polarization

▶ d σ/dQ²: weak effects visible at high Q²
 → Parity violation in NC first observed at HERA

Double differential cross sections
 To explore full potential of EW(+QCD)
 sensitivity ← First HERA-II [new at DIS06]

EW+QCD fit

• Reminder: ZEUS-JETS fit = HERA-I F_2 + Unpol. highQ² NC+CC + DIS incl.Jet + PhP di-Jets. \rightarrow The best we could do with HERA-I

• Now: ZEUS-JETS + Polarized e- NC and CC [new at DIS06]

- -- First fit using HERA pol data
- -- Best sensitivity not only to PDFs but also to EW
 - \rightarrow The best we can do now

NC cross section: $\sigma(e^{\pm}p) = (Y_{+}F_{2}^{0} \mp Y_{-}xF_{3}^{0}) \mp P(Y_{+}F_{2}^{P} \mp Y_{-}xF_{3}^{P})$

Structure functions: $F_{2}^{0,P} = \sum_{i} A_{i}^{0,P}(Q^{2})[xq_{i}(x,Q^{2}) + x\overline{q}_{i}(x,Q^{2})]$ $xF_{3}^{0,P} = \sum_{i} B_{i}^{0,P}(Q^{2})[xq_{i}(x,Q^{2}) - x\overline{q}_{i}(x,Q^{2})]$ unpolarized coefficients $A_{i}^{0}(Q^{2}) = e_{i}^{2} - 2e_{i}v_{i}v_{s}P_{z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2})P_{z}^{2}$ $B_{i}^{0}(Q^{2}) = -2e_{i}a_{i}a_{e}P_{z} + 4a_{i}a_{e}v_{i}v_{s}P_{z}^{2}$ polarized coefficients $A_{i}^{P}(Q^{2}) = 2e_{i}v_{i}a_{e}P_{z} - 2v_{i}a_{i}(v_{e}^{2} + a_{e}^{2})P_{z}^{2}$ $P_{z}^{P}(Q^{2}) = 2e_{i}a_{i}v_{s}P_{z} - 2v_{i}a_{i}(v_{e}^{2} + a_{e}^{2})P_{z}^{2}$ $V_{e} \text{ is very small (~0.04).}$ $P_{z} >> P_{z}^{2} (~middle Q^{2})$ $unpolarized xF_{3} \rightarrow a_{i},$ $polarized F_{2} \rightarrow v_{i}$

Light quark couplings to Z

 \bullet V_u, V_d, A_u, A_d \rightarrow 4 fits in which 2 of them are free to be determined ZEUS ZEUS ~ < م ح ZEUS-pol-a,,-vu-PDF (prel.) ZEUS-pol-a_d-v_d-PDF (prel.) total uncert. total uncert. uncorr. uncert. uncorr. uncert. H1-a_u-v_u-PDF 0.5 H1-a_d-v_d-PDF 0.5 0 0 -0.5 -0.5 SM SM CDF CDF 68% CL LEP 68% CL -1 LEP -1 -0.5 0.5 0 -1 -0.5 0.5 0 -1 a_{u} a_d

- High precision, competitive to other experiments
- Big improvement in v determination (compared to HERA-I unpolarized)
 → Polarized data sensitivity

<u>Search for isolated lepton</u> <u>with missing Pt</u>

• Reminder: ZEUS completed search for isolated lepton with missing Pt in the context of single top production for HERA-I

- Now extending the analysis with emphasis moved to:
 - -- Selection optimal for W production search, closer to H1 analysis as H1 observes excess in data in particular at large $P_T^X(P_T \text{ of hadron system})$

Electron channel

• 98-05 250 pb⁻¹ were analyzed [New at DIS06]

$e ext{-channel}$			$12 < P_T^X < 25 \mathrm{GeV}$				$P_T^X > 25 { m GeV}$			
98 - 05	e^-p	143 pb ⁻¹	4	/	1.98 ± 0.36	(58 %)	3	/	2.86 ± 0.46	(43 %)
99 - 04	e^+p	$106 \ {\rm pb^{-1}}$	1	/	1.50 ± 0.15	$(59 \ \%)$	1	/	$1.50^{+0.12}_{-0.13}$	(78 %)

Muon channel

 $\begin{array}{c|c} \mu \mbox{-channel} & 12 < P_T^X < 25 \ {\rm GeV} & P_T^X > 25 \ {\rm GeV} \\ \hline 04 - 05 \ e^-p \ 126 \ {\rm pb}^{-1} & 2 \ / \ 1.4 \pm 0.2 \ (68 \ \%) & 2 \ / \ 1.4 \pm 0.2 \ (86 \ \%) \end{array}$

Muon candidates

Di-Jet cross sections in DIS

• Given that HERA jets were shown to be important ingredients for determination of PDFs (in particular gluon) and α_s :

 \rightarrow Double differential cross sections with large luminosity (82 pb⁻¹)

 \rightarrow Di-Jet which has direct sensitivity to α_s and gluon [New at DIS06]

• Cross sections in ζ and Q^2

 $\xi = x_{Bj} \left(1 + M_{jj}^2 / Q^2 \right)$

 \rightarrow Very promising to deliver better constraint on PDFs

Inclusive Jet in DIS and α_s determination

• HERA gives one of the most precise measurements (Theo. uncertainty dominates)

► Double differential cross sections (in E_T, Q²) were also measured

World average does not include HERA HERA average does not include new measurements

Three- or Four-Jet in photoproduction (PHP)

With 121 pb⁻¹: 3-Jet and 4-Jet PHP cross sections were measured → 4-Jet is the first measurement at HERA [New at DIS06]

-- Test of LO ME +PS MCs (Matrix Element + Parton Shower, LLA)

- -- Test of Multi-Parton Interaction (MPI) models
- \rightarrow Vital inputs to the LHC

• 4-Jet cross sections as a function of x_{γ}^{obs}

- $x_{\gamma}^{obs} :> 0.75 \rightarrow \text{photon direct}$ < 0.75 $\rightarrow \text{photon resolved}$
- LO ME+PS failed at low x_{γ}^{obs}
- HERWIG + MPI described data
- This trend seen clearer at low Mjjj
 Also observed in 3-Jet events

Light nuclei production in DIS

- Light nuclei was looked for in DIS events' final state [New at DIS06]
- ► Mass (from dE/dx and mom.)

-- First observation of anti-deuteron, triton produced in DIS

▶ Prod. Ratio anti-deuteron/anti-proton

-- Consistent with H1 (PHP) **ZEUS**

 $Q^2 = 45.5 \text{ GeV}^2$, $E_e = 14.2 \text{ GeV}$ antideuteron; P = 1.1 GeV/c, dE/dx(mips) = 2.7, E_{CAL} = 3.2 GeV

III. Low-energy running

• F_L measurement

-- Amongst various use-cases, for example, vector mesons at low W, F_2 measurement at higher x etc., here we considered our feasibility of measuring F_L

• F_L is a fundamental observable

$$F_2 = \frac{Q^2}{4\pi\alpha^2} (\sigma_L + \sigma_R)$$
$$F_2 = \frac{Q^2}{4\pi\alpha^2} (\sigma_L + \sigma_R)$$

 $F_L = \frac{Q^2}{4\pi\alpha^2} \sigma_L \quad \leftarrow \text{Proton structure as probed by} \\ \text{longt. Polarized } \gamma^*$

F_L=0 at QPM, i.e. static model
 → Hence, non-zero F_L value can be directly related to parton dynamics inside proton

• F_L @ low-x is particularly interesting as it is a very good test of low-x parton dynamics which is not yet understood

 \rightarrow Theo. uncertainty is large

- And HERA is the only place where F_L can be measured at low-x
- No "model independent" extraction of F_L yet

From Pumplin, DIS05

Technical challenges

• Cross sections is a composite of F_2 and $F_L \rightarrow$ To separate F_L out, >=2 cross sections with different y are needed for each (x,Q²)

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}}Y_{+}\{F_{2} - \frac{y^{2}}{Y_{+}}F_{L}\}$$

➔ To obtain F_L with high accuracy:
 -- larger y difference

- -- more points
- are preferable
- High-y is experimentally challenging as:
- -- Hadrons come closer to scattered e
 - \rightarrow Becomes difficult to identify e
 - → Event topology comes closer to PHP, giving much larger backgrounds

-- High-y $\leftarrow \rightarrow$ Low energy electron

→ Efficiency for detecting such low-energy electrons, and also purity against PHP becomes even more difficult issues

Ideas to control PHP backgrounds

• 6m tagger

-- Tags 0-degree scattered electron. (Acceptance check of Luminosity photon calorimeter, $ep \rightarrow e \gamma p$)

-- Provides direct measurement of PHP backgrounds

-- Acceptance for PHP events: larger for $e+(\sim 25\%)$

→ Control of PHP backgrounds, giving correct normalization of MCs

• Using CTD tracks for Electron ID

-- Reduces PHP backgrounds

-- But at the same time, signal acceptance is limited

 \rightarrow Feasibility to extend to lower angle using HES/Presamper (under study)

ZEUS feasibility of extracting F_L

Beam energies and lumi
 10 pb⁻¹ @ Ep=460 GeV
 30 pb⁻¹ @ Ep=920 GeV

Control plots at low energy run

- At low Q², systematic error (due to PHP) dominates while at high Q², stat error dominates.
- Although the precision is moderate, the measurement of F_L is of fundamental importance and ZEUS expresses an interest in measuring F_L in a low energy run.

Summary

• ZEUS in 2006: detector and DAQ are operating fine. CTD trips if proton background is bad, which is the main reason of data-taking inefficiency.

- HERA-II detector understanding progressing well. New MVD alignment brought a significant improvement.
- HERA-II Physics analysis progressing nicely, producing timely results.
- Finalizing HERA-I analyses, still producing world's best or first measurements
- ZEUS expresses interests in low energy running, although the F_L measurement will be experimentally challenging.

Light quark couplings to Z -cont'd-

Multi-Jet in PHP -cont'd-

0.5

60

40

80

100

M_{3i} (GeV)

• The pQCD describes data at high mass