### Towards a TPC at the ILC

Peter Wienemann

University of Freiburg

for the ILC TPC groups

61<sup>st</sup> Meeting of the DESY Physics Research Committee May 11-12, 2006 DESY, Hamburg

# **ILC TPC groups**

Europe: **RWTH Aachen** DESY **U** Hamburg U Karlsruhe **U** Freiburg **UMM Krakow MPI-Munich** NIKHEF U Lund **BINP Novosibirsk** LAL Orsay **IPN** Orsay **U** Rostock **CEA Saclay PNPI St. Petersburg** 

Asia: Chiba U Hiroshima U Minadamo SU-IIT Kinki U **U** Osaka Saga U Tokyo UAT **U** Tokyo **NRICP** Tokyo Kogakuin U Tokyo **KEK Tsukuba** U Tsukuba Tsinghua U

America: Carleton U LBNL MIT TRIUMF Indiana U U Montreal U Victoria Purdue Cornell Yale

# **Tracking at the ILC**

Tracking requirements of ILC physics program:

- excellent momentum resolution
- high reconstruction efficiency and robustness
- good particle identification capabilities
- minimum interference Higgs-strahlung  $e^+e^- \rightarrow HZ \rightarrow HI^+I^$ with calorimetry  $\sigma(1/p_{T}) = 0.7 \times 10^{-4} \text{ GeV}^{-1}$   $\sigma(1/p_{T}) = 2.8 \times 10^{-4} \text{ GeV}^{-1}$
- **Discussed options:** 
  - Si tracker (SiD)
  - TPC (LDC, GLD)



Peter Wienemann

# Working principle of a TPC

A good candidate for the main tracker is a time projection chamber:



### **Advantages of a TPC**

- Relatively cheap instrumentation of large volume with many voxels (robustness)
- Minimum amount of material
- genuine 3D track reconstruction without ambiguities
- good particle identification through dE/dx measurement

## New gas amplification devices

Replace conventional MWPC system (wires) by micropattern gas detectors (MPGD)

Most promising:

- Gas electron multiplier (GEM) (F. Sauli, 1997)
- Micromegas (Y. Giomataris et al., 1996)

#### Advantages:

- Amplification structures of order O(100 μm)
- Intrinsic ion feedback suppression
- Fast and narrow electron signal





### Gas electron multiplier (GEM)

- 50 μm thick Kapton foil
- 5 μm copper coating on both sides
- hexagonally aligned holes
  Ø 70 μm, 140 μm pitch
- multiple GEM stacks possible (flexibility to optimize operation)





#### Electron avalanche inside holes:



Peter Wienemann

### Micromegas

- Mesh with typically 50 μm pitch
- Typically 50 µm between mesh and pads
- Very small diffusion in amplification gap





### **Overview of R&D activities**

- TPC prototypes
- Spatial resolution
- Ion backdrift
- TPC with pixel readout
- Large prototype
- Organization
- Time scale of next steps

Peter Wienemann

# **TPC prototypes**

**MP-TPC** 



Peter Wienemann

Carleton

DESY PRC, May 2006

Karlsruhe

### **Spatial resolution**

Momentum resolution is closely connected to spatial resolution

**Gluckstern** formula:

$$\frac{\sigma_{p_T}}{p_T} = \left[ \frac{\sigma_{r\varphi}}{0.3 \ L^2 \ B} \ p_T \sqrt{\frac{720}{N+4}} \right]$$

 $p_{\tau}$ : tr. momentum  $\sigma_{r_{\phi}}$ : point resolution *L*: track length *B*: magnetic field *N*: # track points

Goal in TESLA TDR (TPC alone):  $\Delta p_{\perp}/p_{\perp}^2 = 1.5 \times 10^{-4} \text{ GeV}^{-1}$ 

Corresponds to  $150 \ \mu m$  (100  $\mu m$ ) average point resolution transverse to drift direction for an outer TPC radius of 162 cm (139 cm)

Peter Wienemann

### **Spatial transverse resolution**



- Different pad arrangements have different fit systematics Good agreement  $\Rightarrow$  systematics under control Not enough charge sharing
- for 2.2 mm wide pads at 4 T in Ar-CH<sub>4</sub>-CO<sub>2</sub> (93-5-2) for optimal performance
- TESLA TDR requirements
  ≈ fulfilled

Good progress in understanding fit systematics during last two years

### **Spatial transverse resolution**



# Similar performance for Micromegas

Simulations in good agreement for GEMs and Micromegas

Peter Wienemann

With different gas and different pad size:  $\approx$  70  $\mu$ m achieved at 4 T Measurements at 4 T only possible in DESY magnet so far Berkeley/Orsay/Saclay Resolution [microns] • ArCH4 (90-10) 280 Ariso (95-5) 260 240 B = 1.0 T220 200 180 160 140 MC Simulation 120-100 80 60 40 Micromegas pads:  $1 \times 10 \text{ mm}^2$ 20-15 10 25 40

Drift distance [cm]

### **Two track resolution**

Transverse two track resolution studied using laser beams:



track separation (mm)

Good resolution for tracks whose separation is more than ~1.5 times the pad width

Peter Wienemann

### **Open questions**

- Does the performance achieved with small prototypes scale to larger chambers?
   → Large prototype
- Can the performance of the developed algorithms be re-produced in more realistic environments? In particular:
- How much dilute ions the spatial resolution?

### lon backdrift





#### Important issue due to ILC bunch structure:



337 ns between BX ≈ 1/160 maximal e- drift time

199.05 ms

- $\Rightarrow$  ungated operation needed for a whole bunch train (1 ms)
- Intrinsic ion feedback suppression of amplification system necessary

Peter Wienemann

🗕 950 u s 🔿

DESY PRC, May 2006

🗲 950 u s 🗲

### lon backdrift



### lon backdrift



Micromegas 1500 lpi, gap 100µm Micromegas 10<sup>-3</sup> Micromegas Orsay/Saclay 10<sup>2</sup> 10<sup>2</sup> 10<sup>2</sup>

> Ion backdrift  $\propto 1 / \log(gain)$ Per mille level achieved

Ion backdrift independent from gain at 0.25 % at 4 T

Ion backdrift × gain < 5 seems achievable How large is expected primary charge?

DESY PRC, May 2006

Peter Wienemann

18

# Primary charge in TPC

Main primary charge source is e+e- pairs from fusion of beamstrahlung photons (not "physics" processes)

Expected charge production in TPC subject to large uncertainties:

- beam parameters
- mask design
- Geant4 simulation

TDR mask







### **Primary charge in TPC**

#### Charge deposits from e+e- pairs in TPC after 5 BX:



# Open question: How much do ions resulting from these charge deposits affect the spatial resolution?

Peter Wienemann

### **TPC with pixel readout**

Read out TPC using CMOS readout chip with pixel size  $O(100 \ \mu m)$  instead of conventional pads

Pixels only provide binary information  $\rightarrow$  Digital TPC

Features:

- Allows to see individual ionization clusters = basic track building blocks (potential to achieve ultimate resolution)
- "Typical" track would be sampled by 30 clusters/cm × 120 cm = 3600 clusters
- Potential to improve dE/dx measurement by a factor of ≈ 2 using cluster counting (Poissonian vs. Landau distribution)
- Insensitive to gain fluctuations/variations
- Very compact, simple (binary) electronics

### Medipix2 setups

First experience collected with Medipix2 chip developed for x-ray imaging (provides no time information)



### $\delta$ electron events



#### Micromegas:

One primary e-  $\rightarrow$  one pixel (small diff.) Estimated single e- detection efficiency for present setup: O(90 %) Peter Wienemann DESY



#### GEMs:

One prim. e-  $\rightarrow$  several pixels (larger diff.) Estimated single e- detection efficiency for present setup: O(50 %) in HeCO<sub>2</sub>

### **Medipix2** simulation

#### Simulation of Freiburg GEM setup:



Peter Wienemann

### **Pixel TPC at the ILC**

Present status extrapolated to "typical" ILC conditions: 100 GeV muon, B = 4 T, Ar-CO<sub>2</sub>-CH<sub>4</sub> (93-2-5), 100 cm drift



GEMs good to detect whole clusters Micromegas good to detect single electrons DESY PRC, May 2006



# Timepix

- Add time information to Medipix → Timepix (part of EUDET)
- Up to 100 MHz clock distributed to all pixels
- Dynamic range  $2^{14} \times 10$  ns = 160  $\mu$ s
- Discharge protection
- No zero-suppression (for time being), keep chip size, pixel size and readout protocol for Medipix2 compatibility
- Submits in 0.25 µm via CERN to IBM:
  engineering run (~8 wafers) in 2006, production run (~48 wafers) in 2007

### Large Prototype



#### Field cage:

Generic for different end plates technologies (part of EUDET)

Based on experience from DESY MediTPC prototype and Aachen simulations

Will be built by DESY, ready by Summer 2007

#### Field strips



#### End plates:

Different plates for different technologies. Built by groups (not part of EUDET)

## Other LP activities

#### Test beam area at DESY:

- electron beam
- large aperture 1.2 T magnet from KEK
- part of EUDET (DESY)

#### Electronics (TDC based):

- Q-to-t chip (ASDQ) + TDC
- part of EUDET (Rostock)

pre-amp shaper chips: progr.'able ASIC developed at CERN modified ALTRO chip (40 MHz) part of EUDET (Lund/CERN)

Electronics (FADC based):

Software:

- harmonized analysis, simulation and reconstruction framework based on ILC soft tools
- part of EUDET

All EUDET activities in close collaboration with ILC TPC

### Organization

Tasks broken down to work packages with different coordinators:

- Mechanics: field cage design, end plates for GEMs, Micromegas and pixel readout
- Electronics: FADC-based, TDC-based, CMOS readout, cooling, power switching
- Software: analysis, simulation, reconstruction software, background studies, full detector simulation and performance studies
- Calibration: field map, field distortions, alignment

### **Time scale**

- Summer 2006: first Timepix chips
- Winter 2006/2007: pre-amplifier, DESY test beam area
- Summer 2007: LP field cage ready to be used
- Winter 2007/2008: DAQ prototype available
- Winter 2009/2010: compact readout system prototype

## Summary

- TPCs with MPGD gas amplification are routinely operated by many groups.
- Achieved point resolution with small prototypes sufficient to meet momentum resolution requirements.
- Per mille level ion backdrift values can be achieved at low gain.
- Pixel TPC proof-of-principle accomplished.
  Timepix is next step.

First LP results expected by end of next year.