Status of DEPFET pixel detectors for ILC

Peter Fischer for the DEPFET collaboration

Bonn University:	R. Kohrs, M. Karagounis, H. Krüger, L. Reuen, C. Sandow, M. Trimpl, N. Wermes
MPI Munich, HLL, ILC:	L. Andricek, G. Lutz, H. G. Moser, R. H. Richter, M. Schnecke
Mannheim University:	P. Fischer, F. Giesen, I. Peric
MPI Munich, HLL, XEUS:	K. Heinzinger, P. Lechner, L. Strüder, J. Treis

Presentation at the PRC review, 26.5.2005, DESY

Talk Outline

- Summary of ILC requirements
- Possible geometry of ILC DEPFET layer
- The DEPFET working principle
- Sensor design & technology
- Thinning technology
- ILC prototype system
- Measurements on ILC structures:
 - -Irradiations
 - -Noise, clear efficiency
 - -Matrix: Lab results
 - -Matrix: Test beam results
- Power consumption of ILC system
- Summary and outlook

Requirements for ILC innermost Tracker Layer

• Time structure: one train of **2820 crossings** in ~**1 ms** every ~**200ms**

• Hit density: For a 10 cm long cylinder at **r=15 mm** (A=10500 mm²):

- ~ 370 tracks / crossing
- \sim 0.035 tracks / mm² / crossing
- \sim 100 tracks / mm^2 / train

much less if r > 15 mm (~ 1/7 for r=27 mm)

- Row readout rate: some 10 MHz
- Resolution: **few \mum** (\Rightarrow pixel size \leq 25 x 25 μ m²)
- Radiation tolerance ≥ **200 krad** (for 5 years operation)
- Radiation length very small: ~0.1% X₀ per layer

(simulation from C. Büsser, DESY)

ILC DEPFET Module (Layer 1)

- Modules have active area ~13 x 100 mm²
- They are read out on **both sides**.

- Occupancy simulation:
 - Assume signal width of $10\mu m$
 - Read **10 frames** per train
 i.e. 10 x 2048 rows in 1ms
 or one row in 50ns (**20MHz**)
 - Expect ~10 tracks / mm² / event
- Pattern recognition should not be a problem!

P. Fischer for the DEPFET collaboration, page 4

Possible Geometry of Layer 1

DEPFET Principle of Operation

- A **p-FET** transistor is integrated in every pixel
- A potential minimum for electrons is created under the channel by sideward depletion
- Electrons are collected in the "internal gate" and modulate the transistor current
- Signal charge is removed via a clear contact

- Fast signal collection in fully depleted bulk
- Low noise due to small capacitance and first amplification
- Transistor can be switched off by external gate charge collection is then still active !
- Readout can be at the source ('voltage signal') or at the drain ('current signal') ILC uses drain readout

Matrix Operation

- Connect gates and clears horizontally to select / clear single rows. Apply voltages with SWITCHER chips.
- Connect drains (or sources) vertically and amplify current (or voltage): CURO chip
- Charge is not shifted!
- Readout sequence: Enable row read current $(I_{sig} + I_{ped})$ clear subtract current (I_{ped}) move to next row

Sensor Design: MOS Devices

- Moved from JFETs to MOSFETs (top gate):
 - smaller device variations (required for large sensors)
 - smaller pixels (linear transistors possible)
 - radiation tolerance of gate oxide ?
- Increased amplification (now ~1nA / e⁻)
- Fast and complete clear (using clear gate)
- Compact double pixel cell

Sensor Simulations

- Use 3D-Simulator (Poseidon) for complicated structures
- Device behavior can be predicted accurately. Important for successful new designs!

Device Cross Sections

P. Fischer for the DEPFET collaboration, page 10

Sensor Fabrication Technology

• These are required for large matrix designs

Making thin Sensors

• A novel technology to produce detectors with thin active area has been developed and prototyped (L. Andricek)

P. Fischer for the DEPFET collaboration, page 12

Quality of Thin Diodes

Dummy Module with ~ ILC Geometry

ILC Prototype System

Status of DEPFET Pixel Detectors - DESY, 26.5.2005

P. Fischer for the DEPFET collaboration, page 15

Switcher ASIC (Multiplexer)

- 64 channels with 2 analog MUX outputs ('A' and 'B')
- Can switch up to 25 V
- digital control ground + supply floating
- fast internal sequencer for programmable pattern (operates up to 80MHz)
- Daisy chaining of several chips on a module possible
- Present dissipation: 1mW/channel @ 30MHz
- 0.8µm AMS HV technology
- Radiation tolerance may be problematic!

CURO ASIC (Drain Readout)

- **128 channel** drain readout chip
- Drain voltages are kept constant with regulated cascode circuits
- Direct current subtraction by switched current technique
- Real time hit finding and zero suppression
- Hit addresses store in on-chip RAM
- 0.25µm technology. Radiation tolerance should be fine.
- Noise per sampling: 30e⁻ @ 25MHz
- Row rate of 25 MHz has been achieved (i. e. sampling @ 50MHz)
- Digital zero suppression works at >100 MHz

Irradiation of Single Pixels

- Crucial question: Threshold shift of the (external) MOSFET (oxide thickness ~200nm)
- Irradiations with ⁶⁰Co and Xrays (~17keV,Mo) up to ~1Mrad

- Threshold shifts are negative, as expected from positive oxide charge
- This can be compensated for by variation of bias voltages
- Transconductance remains unchanged \Rightarrow noise should not degrade

Effect of dose rate / annealing

- Shifts are small: only 4...- 6 V
- Observe saturation after 200 krad
- Device 'off' state is slightly better good: this is where devices are operated most of the time!

But: possible explanations for these good results need to be confirmed

Measurements on ILC Pixels: Noise

• ⁵⁵Fe spectrum with ILC structure taken at room temperature with 10µs shaping time:

- Noise peak: 10e-
- Best measurements so far (large XEUS structure, cold, slow): 2.2e-
- DEPFETs regularly provide noise below 10e⁻ @ room temperature (single devices with slow shaping)!

Clear Efficiency

Cl-gate length=7.2µm

6

5

- Study mini matrix devices in laser setup
- Plot pedestal variations ('noise'). If they are constant, clearing is complete!
- Study various designs (high-E, no high-E), geometries (length of clear gate) and operating conditions (static or clocked clear gate)

- Study clear efficiency for short clear pulses (new result, not in PRC report!)
- Device with common clear gate, High-E

Complete clear in only 10-20 ns @ $\Delta V_{clear} = 11-7 V$

ILC DEPFET-System in the Lab

ILC system performance in the lab:

- High speed: row rate: 0.6 MHz
- Noise: 230 e⁻

Noise contributions:

- \sim 100e- from CURO etc.
- ~ 60e- from I2U converter (CURO \rightarrow ADC)
- \sim noise pickup of I2U converter

Test Beam Setup (Jan / Feb 2005 @ T24, DESY)

P. Fischer for the DEPFET collaboration, page 24

Test Beam Results: Online Correlations

Beam spot on telescope

- Event rate: 10Hz
- collected 10 million events
- highE / non-highE in beam
- data analysis ongoing

Beam spot on (small) DEPFET

Test beam: Event Displays

(range of tracks is \sim consistent with measured energy of few 100keV)

- Cluster: Only 1-2 pixels hit in x and y at perpendicular beam incidence
- Much more information about event structure due to spectroscopic quality of the device!

• Amplitude sum in cluster (with preliminary calibration...)

Cluster Pulse Height Spectrum

• For $V_{\text{Drain}} = 5V$ and $I_{\text{Drain}} = 100 \mu A$ (conservative values): $P_{\text{DEPEET}} = 0.5 \text{mW}$ per *active* device Layer1 (8 Modules x 2 sides x 512 = 8192 pixels), duty cycle = 1/200: Sensor: only active pixels dissipate power ⇒ 8192 x 0.5mW / 200 = **20 mW** SWITCHER: 6.3mW per active channel at 50MHz (measured) \Rightarrow 16 x 6.3mW / 200 = **0.5 mW** CURO: 2.8mW / channel (measured) \Rightarrow 8192 x 2.8mW / 200 = **114 mW** Sum: ~ 135 mW Scaling up from 18.7 Mpixels (L1) to ~493 Mpixels for 5 layers gives: Total: ~ 3.6 W • Note: Largest dissipation (CUROs) is outside active area where cooling is less problematic! This calculation assumes that all chips can be switched into a stand-by mode with ~ zero power dissipation between bunch trains. This feature must be included in future chip versions.

Our DEPFET prototype module is close to ILC specs

Achievements:

- Technology for thin ($\leq 50 \mu m)$ detectors established (total budget of sensor 0.11% X_0)
- Present Pixel size: 24x33 μ m² can go to ~ 20x20 μ m², limited only by manufacturing equipment !
- Complete clearing works with short (10ns) clear pulses at moderate voltages. No need to clock clear gate !
- Radiation tolerance (threshold voltage shift) demonstrated up to 1MRad !

Advantages DEPFET

- Charge collection in fully depleted bulk with high charge collection field
- High S/N (~40 at 100e noise), high spatial resolution (expect ~2 μm)
- Low average power dissipation for full ILC system (4W)
- Fast readout possible (some 10 MHz)
- -Low material

Next steps

- Irradiate chips and full system
- Operate complete system at full ILC speed
- Produce thin sensors with larger matrices
- Design new SWITCHER (lower voltage operation, smaller chip, standby mode, radiation hardness?)
- Design new CURO (deeper FIFO, standby mode, ADC?, ...)