

ZEUS status report - recent results

S.Chekanov (ANL) for the ZEUS Collaboration

DESY PRC review (October 28, 2004)

- Data taking and running conditions
- Detector status
- Physics Highlights
- Summary

Data taking: 2003-2004

- Total gated: ~45 pb⁻¹
- Gated/HERA delivered ~ 54%
- Nearly all taken data can be used for physics
- All detectors are functional
 - Gated/MVD > 95%
 - Gated/STT > 95%

ZEUS data taking efficiency-I

- Significant improvements during July-August
- Efficiency went up since May due:
 - better beam conditions (better vacuum, less spikes)
 - improvements in DAQ/trigger
- Remaining inefficiency:
 - ~10% HERA initial luminosity tuning
 - ~5-8% HV trips in central tracking (CTD)
 - ~5-8% DAQ problems
- Room for further improvements:
 - speed up run starts
 - reduce DAQ problems
 - reduce sensitivity to CTD HV trips

ZEUS real efficiency 80-90%

ZEUS data taking efficiency-II

•Typical trigger dead time was 5-10% in May (at last PRC):

- removing very busy events due to beam gas collisions from the trigger chain
- biggest improvement regenerated pumps in June
 - vacuum was improved at least by a factor two

Current trigger dead time ~ 1-2% up to I_2 ~50 mA & I_2 ~100 mA

- Commissioning of Global Tracking Trigger (GTT) at second-level trigger finished:
 - includes information from CTD, STT & MVD:
 - better beam gas rejection and physics filters
 - extend to forward region
 - improve vertex resolution
 - potentially can reduce trigger rates by ~15-30%
 - some physics filters already use the GTT
 - allows heavy-flavor tagging on-line in the SLT
 - full operation for e⁻ running

2003/2004 data taking

New components:

- Silicon Micro-Vertex-Detector (MVD)
- New forward tracking with STT
- New tracking trigger

Beauty candidate: 2 jets + 2 muons

J/Psi candidate

New data are already an important part of ongoing physics program (see ICHEP04)

 \rightarrow will be discussed in context of particular physics topic

Status of MVD & Luminosity monitors

- 47 M events collected with MVD
- No big radiation dose during May-August
- Detector is in good shape
- Reliable detector operation

 \rightarrow see physics results later

Lumi spectrometer

- Shielding upgrade + new set of radiation monitors
 Lumi calorimeter
- Good agreement with Lumi spectrometer

NC DIS(Q²>200) / Lumi (nb-1)

Taking data with STT

- STT built to improve reliability and efficiency of tracking in forward direction
- STT/FRTD running at nominal HV during 2004 > 95% efficiency
- Angular coverage matches well with MVD and starts (θ < 23°) where CTD has low acceptance
- MVD/STT matching is in progress
 - With event vertex one can reach about 10% accuracy for 1-5 GeV
- STT was incorporated into GTT & TLT (software and hardware are ready)

Good STT-CTD-MVD matching: 90-95% efficiency for isolated tracks

Results of HERA shutdown (Aug-Sep)

- General and preventive maintenance and detector repairs
- Calorimeter:
 - smallest number of UCAL bad channels for the last 6 years
- Lumi detectors:
 - Spectrometer: additional shielding against synchrotron radiation
 - Calorimeter: some electronics has been repaired
- Feedbox/Solenoid: monitoring was improved
- DAQ and trigger improvements

ZEUS is ready for data taking

Magnet heating by STT

It was found that:

- STT electronics has insufficient cooling
- Operation of STT electronics can lead to temporary leaks in solenoid insulation vacuum
- A serious solenoid failure cannot be repaired in a short time
- STT stays off for now
- Investigations are on-going

ZEUS Grid

- HERA-II data rates create strong increase of MC production demand
 - Need access to grid resources
 - At the same time, keep the "traditional" production sites (funnel)
- 0.6 M events already produced samples pass standard DQM & are in use for physics analysis
- Transparent integration of traditional production system & grid

Jobs per VO (snapshot at RAL)

The ZEUS Gateway Concept

Physics output

- 27 papers new results
- 9 papers finished in 2004

ZEUS papers are among most cited in literature

ZEUS physics program

- Proton structure, PDF
- Electroweak unification
- Jet production QCD
 - α_s determination
 - photon structure
- Diffraction
- Heavy flavor physics (charm & beauty)
- Search for new physics
- Particle production
 - pentaquarks

Q² = -q²: 4-momentum transfer squared
x: fraction of proton momentum carried by quark

- □ HERA data at high x are still less precise than fixed-target experiments
- Fixed-target experiments suffer from systematic uncertainties and rigorous treatment of uncertainties is difficult
- □ Include jet observables measured at ZEUS

- sensitive to gluon at x~0.01-0.1 through BGF process

ZEUS jets QCD analysis

ZEUS only fit

ZEUS + JETS fits

Improvement in determination of gluon densities at mid-to-high x Rigorous treatment of uncertainties

DIS at HERAII: collisions with polarized leptons

NC DIS:

Z^o couples differently to the left and right handed lepton

Contribution at high Q²

(dependence of electroweak terms in the cross section)

CC DIS:

d right Linear dependence on polarization Contribution to all Q² $\sigma_{CC}^{\pm}(P) = (1 \pm P) \sigma_{CC}^{\pm}(0)$ HERA II data: 16.4 pb⁻¹ with P= -40.2%

14.1 pb⁻¹ with P= 31.8%

Results on polarization. HERAII data

Polarization effect established in CC DIS More data are needed for NC DIS

Agreement with the SM for both CC & NC DIS

$\alpha_{s}(M_{z})$ determination

Competitive results Theoretical uncertainties dominate Influence on world average Most precise measurement from inclusive jets

Most recent measurement from 3/2 jet ratio

S.Chekanov, DESY PRC review (Oct 2004)

Running α_s

- Covers significant range in energy scale
- Running of α_s in single experiment
- Theoretical uncertainties dominate NNLO QCD is needed

Charm production

Charm production directly sensitive to gluon density in proton

Look at "golden" decay channel: $D^* \rightarrow D^0 \pi \rightarrow K \pi \pi$

Increase of statistics for heavy-flavor analyses relies on :

- extending the track acceptance to lower angles (MVD/STT)
- tagging with MVD

e

Charm studies using HERA II data

Charm tagging using decay length Use MVD detector

Decay length significance $S_1 = I/\sigma_1$

First look at HERA II data shows that lifetime tagging with MVD works as expected

Large potential for the future

Beauty production

- Driven by gluons
- QCD calculations:
 - γp: FMNR (Frixione et al.)
 - DIS: HVQDIS (Harris, Smith)
- Multi-scale problem
 - $m_{\rm b} \sim 5 \; GeV$
 - hard scale ensures reliable QCD calculations
 - Q² (DIS)
 - P_T^b (PHP, DIS)

Data somewhat above massive NLO QCD

Beauty studies using HERA II data

- large mass leads to large p_t^{rel} of μ relative to jet axis
- large B-lifetime: use μ impact parameter δ from MVD

A beauty fraction $16.1 \pm 2.7\%$ extracted using p_t^{rel} method Gives consistent result with the impact-parameter method Large potential for the future

Inclusive diffraction with LPS and charm data

- Proton-tagging method with LPS
 ___x > 0.9
 - $x_{IP} < 0.06$
 - high M_x accessible (up to 40 GeV!)

 NLO QCD fits include LPS & charm data

- Good description by the NLO QCD fit
- Fraction of t-channel momentum carried by gluons ~82% at initial scale (Q²=2 GeV²)

Diffractive dijet photoproduction

- QCD factorization:
 - central problem of hard diffraction
- Does not hold in pp
- CDF measurement is by factor 10 lower than NLO based on H1 diffractive PDF
 - need a suppression factor
- resolved contribution in diffractive photoproduction may require a similar correction (factorization breaking?)

LRG 3<η<5 (FPC region) Comparisons with M.Klasen & G.Kramer

$$x_{\gamma}^{\text{OBS}} = \frac{\sum_{jets} E_T^{jet} e^{-\eta^{jet}}}{2yE_e} \qquad x_{\gamma}^{\text{OBS}} < 0.75 \rightarrow \text{``Resolved Enhanced''} \\ x_{\gamma}^{\text{OBS}} > 0.75 \rightarrow \text{``Direct Enhanced''}$$

- 30-fold increase in luminosity compared to previous ZEUS analysis
- Global suppression is more likely than a resolved photon suppression (see shapes)

Diffraction in CC DIS

Diffractive events - significant component of NC DIS What about CC DIS - $e^+p \rightarrow vW^+ \rightarrow vX?$

For Q²>200 GeV² η_{max} <2.9, x_{IP} <0.05: using 99-00 data:

9 events with LRG σ = 0.49 ± 0.2 (stat) ± 0.8 (sys.) pb agrees with RAPGAP CC (color singlet exchange between W⁺ and proton)

 $\sigma^{diff}(e^+p \rightarrow \nu Xp)/\sigma^{tot}(e^+p \rightarrow \nu X) = 2.9 \pm 1.2 (\text{stat.}) \pm 0.8 (\text{syst.}) \%$

Pentaquarks renaissance of hadron spectroscopy?

Constituent Quark model:

mesons $q\overline{q}$ baryons qqq

Does not predict more complicated states (but can accommodate them)

A number of fixed-target experiments observed a narrow baryonic state at 1530 MeV consistent with pentaquark predictions (Diakonov, Petrov, Polyakov)

First evidence of θ^+ :

- in HEP colliding experiment
- for antipentaquark

ZEUS measurement of θ^+

summary of θ^+ measurements

- One of the most precise measurements
- Significant impact on the world average m=1530 ±2 MeV
- First cross sections in DIS

Search for heavy strange pentaquarks

П

Search for charm pentaquarks

If $\theta^+ = uudds$ exists, then $\theta^0_c = uuddc$ can also exist H1 reported a narrow signal at 3099 MeV (Phys. Lett. B588 (2004) 17)

H1 reports in their measured kinematic region (DIS):

 $R = N(\theta_c \rightarrow D^* p / D^*) \approx 1\%$

(consistent with photoproduction data)

ZEUS excludes this fraction using larger D^{*} data sample:

- at 9 σ in DIS and photoproduction
- at 5 σ in DIS (Q²>1 GeV²)

ZEUS data is in contradiction with H1 report

Many new results for ICHEP04

30

Summary

- Significant improvement in ZEUS data taking efficiency
- Data taken using new detectors:
 - MVD & STT
 - GTT at second-level trigger
- ZEUS detector is in good shape. STT problem is under investigation
- Only small fraction of results made public since May 2004 were shown
 - HERA II data are presented at ICHEP04
- Looking forward to more data