POL2000 group: Status Report

Matthew Beckingham
27/5/04
PRC Open Session

On behalf of POL2000 group:
DESY, H1, HERMES, ZEUS

• Introduction
• Physics Motivation
• TPOL Studies
• LPOL vs. Synchrotron
• Conclusions
LPOL: measure longitudinal polarization between HERMES’ spin rotators

TPOL: measure transverse polarisation far from spin rotators

Matthew Beckingham, PRC Open Session, 27/5/04
Compton scatter laser light off pol. electron beam

- **Measure vertical asymmetry of compton photons** $\eta(y)$:
 \[\eta = \frac{E_{\text{upper}} - E_{\text{lower}}}{E_{\text{upper}} + E_{\text{lower}}} \]

- **Continuous laser** (1–2 compton γ’s in 200 bunch crossings)

- **In–situ measurement of $\eta(y)$ from Si strip and scintillating fibre**

- **Measure energy dependence of compton photons**

- **Pulsed laser** (high power, low rate)

- **Measure multi–γ spectrum**
 \[\Rightarrow \text{New 1W laser + Fabry–Perot cavity} \]

- **Measure ’Few–γ’ spectrum**

POL2000:Status Report

Matthew Beckingham, PRC Open Session, 27/5/04
Continuous, reliable operation

However, discrepancy between LPOL and TPOL
 - Time dependent
 - Ratio discrepancy
 ~ 5–15%
Polarised Charged Current

- First pol. CC measurements presented at spring conferences
- 2000 pol. (HERMES) error
 \[\frac{\Delta P_{LPOL}^{2000}}{P_{LPOL}} = 1.9\% \quad \frac{\Delta P_{TPOL}^{2000}}{P_{TPOL}} = 3.4\% \]
- 2004 (conservative) pol. error
 \[\frac{\Delta P_{LPOL}^{2004}}{P_{LPOL}} = 5\% \quad \frac{\Delta P_{TPOL}^{2004}}{P_{TPOL}} = 10\% \]
- LPOL measurement used in preference
 - H1: \(\sigma_{CC}^{P} = 34.67 \text{ pb} \pm 5.6\%(\text{stat.}) \pm 4.8\% \text{ (sys.)} \)
 - ZEUS: \(\sigma_{CC}^{P} = 38.1 \pm 2.9\text{(stat.)} \pm 0.8\text{(sys.)} \pm 0.2\text{(lumi.)} \pm 0.8\text{(pol.)} \text{ pb} \)

\(\Rightarrow \) Aim to minimise pol. error
LPOL Systematic Studies

- Study existing LPOL
- Possible systematics investigated (Winter 2003–Spring 2004) including:
 - Laser energy (figure)
 - Position of Compton cone in calorimeter
 - Laser noise correction
 - False asymmetry
- No dependence of polarisation measurement observed
- LPOL appears consistent with 2000 performance (~2% sys. error)
Components running successfully

Examing offline analysis:

- compare measurements of $\eta+y$

$\eta = \frac{E_{\text{upper}} - E_{\text{lower}}}{E_{\text{upper}} + E_{\text{lower}}}$

- use both Si and fibre position detectors
TPOL Analysis: systematics

- Studies into systematic errors ongoing:
 - Hints of correlations (eg. focus of Compton cone)
Status of the Cavity LPOL

- Allows fast and precise polarisation measurement
- Cavity installation in spring/summer 2003
 - LPOL cavity DAQ system working fine
- New calorimeter
 - Calorimeter design updated (crystal calo. not radiation hard enough)
 - New calorimeter (quartz fibres) installation by end of 2004

10^5 photons/s 10^7 photons/s
Synchrotron Radiation Problem

HERMES Target Field

Cavity LPOL
(Laser controller damaged)

Calorimeter
(hole in Pb shield)

2.45kW!

Laser Crossing Points
(z = 52 m & z = 62 m)

0.26 kW
0.96 kW

-1.571 mrad

0.02 kW
0.54 mrad

0.52 kW
2.70 mrad

z(m)
Actions Taken Against Radiation

- New absorber being designed (cooled Cu, OR 53m) – Installation after shut down
- Improved lead shielding
- Radiation monitoring – dosimeters – PM’s
- Reinstall electronics after results of dosimeter analysis
Conclusions

- Continuous, reliable measurements from both polarimeters
 - First measurements of polarised CC sent to spring conferences with conservative polarisation error (5%)
- LPOL appears consistent with 2000 performance ⇒ ~2% error
- TPOL offline analysis ongoing
- LPOL cavity installed + DAQ working
- Updated LPOL calorimeter design ⇒ Installation by end of 2004
- LPOL cavity electronics suffered from intense synchrotron radiation
 - New shielding in place
 - Constant monitoring of radiation doses
 - Reinstall electronics and continue commissioning
 - New absorber in progress