H1 Status and Prospects, May 2004

Paul Newman Birmingham University

- Data Taking
- Recent Physics Results
- Physics Status and Aims

57th Meeting of the DESY PRC, 27 May 2004
Steady improvement after last vacuum leak (November 2003) . . . pumping takes time
H1 able to run with recent high currents (≈ design) . . . acceptable limits for trackers adjusted
Still suffer from ‘spikes’ in backgrounds
Background conditions remain “harsh” and cause radiation damage . . . FST now inoperational
HERA-II Data Taking: Luminosity

Big improvement on 2003!

> 15 pb$^{-1}$ taken with each lepton polarisation state

Polarisation typically $30 - 40\%$

Small data acquisition deadtimes (H1 active)

Significant HV inefficiencies due to backgrounds / spikes

Only recently reached 2000 level of 85\% HV-on efficiency
Recent H1 Papers

8 papers released since October 2003 PRC . . .

- DESY-03-159 (11/03): Muon Pair Production in ep Collisions
- DESY-03-206 (01/04): Measurement of Dijet Production at Low Q^2
- DESY-04-025 (03/04): Search for Squark Production in R-Parity Violating Supersymmetry
- DESY-04-032 (03/04): Measurement of Anti-Deuteron Production
- DESY-04-038 (03/04): Evidence for a Narrow Anti-Charmed Baryon State
- DESY-04-051 (04/04): Forward π^0 Production and Associated Transverse Energy Flow
- DESY-04-083 (05/04): Measurement of F_2 at low Q^2 in QED Compton Scattering
- DESY-04-084 (05/04): Search for bosonic stop decays in R-parity violating supersymmetry
Recent and Forthcoming Conferences

At DIS04 there were 30 talks by H1 members summarising work in last year, including newly released data on . . .

- Polarised $\sigma(CC')$ from HERA-II
- High p_T Particle Production at HERA-II
- F_2 at low Q^2, high x from ISR events
- τ production
- Forward Jet Production
- $b \rightarrow \mu X$ in low Q^2 DIS
- F_2^b and F_2^c at Large Q^2

(Almost) all on completely original and new topics!

Preparations for ICHEP04 summer conference are well underway

54 abstracts submitted, summarising work of past two years
Systematic Searches For Anomalies in High p_T Data

Investigation of all final states with isolated j, e, μ, γ, ν

$(p_T > 20 \text{ GeV}, 10^\circ < \theta < 140^\circ)$

Overall highly impressive agreement with Standard Model predictions ... but $\mu j \nu, e j \nu$?

HERA-I Events

HERA-II Events

H1 General Search

H1 General Search (Hera-II)
Dedicated Studies of Isolated Leptons with Missing p_T

Study events with isolated high p_T μ, e or τ, missing p_T and large hadronic p_T^X in e^+p data

Events observed and expected in Standard Model . . .

<table>
<thead>
<tr>
<th></th>
<th>HERA-I (110 pb$^{-1}$)</th>
<th>HERA-II (17 pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^X > 25$ GeV</td>
<td>$6 / 1.44$</td>
<td>$0 / 0.53$</td>
</tr>
<tr>
<td>$p_T^X > 25$ GeV</td>
<td>$4 / 1.48$</td>
<td>$0 / 0.29$</td>
</tr>
<tr>
<td>$p_T^X > 25$ GeV</td>
<td>$0 / 0.53$</td>
<td>$2 / 0.34$</td>
</tr>
</tbody>
</table>

$e^+p \rightarrow \mu^+X$

Event MUON-2

$P_T^\mu = 28$ GeV, $P_T^X = 67$ GeV, $P_T^{miss} = 43$ GeV

HERA-II $e^+p \rightarrow e p_T'X$

$P_T^e = 37$ GeV, $P_T^{miss} = 44$ GeV, $P_T^X = 29$ GeV
Possible Interpretations?

W radiation is dominant SM process . . .
Excess in HERA-I $e + \mu$ is $\sim 10^{-3}$ fluctuation

Beyond the Standard Model . . .
Anomalous single top production?
$R_{p\bar{t}}$ production with $\bar{t} \rightarrow \bar{b}W$?
. . . dedicated searches published

This anomaly can only be clarified with large increases in e^+p luminosity
If current event rate persists, 5σ “discovery” possible with 500 pb$^{-1}$

See also anomalously high H1 yields of multi-electron events in e^+p scattering
SUSY at HERA-I

Search programme with HERA-I data nearing completion

e.g. Recent searches for R_p SUSY \tilde{q} production

Search for e.g. $e^+d \rightarrow \tilde{t}$ via λ'_{131}, $e^-u \rightarrow \tilde{b}$ via λ'_{113}

Consider R_p and R_p decays covering most of BR for all $m(\tilde{q})$

Also consider for first time $\tilde{t} \rightarrow \tilde{b}W$

Limits: e.g. $m(\tilde{t}) > 275$ GeV for λ'_{131} of em strength
Search Prospects at HERA-II

HERA has unique discovery potential for some time to come in several areas

\(e^+ \) or \(e^- \)

Anomalous \(t u \gamma \)

\(q \) radius / form factor

Contact Interactions

Double charged Higgs

Large Extra Dimensions

\(e^* \)

\(q^* \)

\(e^+ \)

\(F = 0 \) LQ / LFV

\(\tilde{t} \) (\& \(\tilde{c}, \tilde{u} \))

\(e^- \)

\(F = 2 \) LQ / LFV

\(\tilde{b} \) (\& \(\tilde{s}, \tilde{d} \))

\(\nu^* \)

Improvements on current sensitivity require large increases in \(\mathcal{L} \)

... top priority to optimise overall search programme

\(e^+ p \) and \(e^- p \) complementary in some areas, both interesting
\(F^\text{em}_2(x, Q^2) \) and \(u \) at high \(x \)

\[
\tilde{\sigma}_{\text{NC}}^\pm = F_2 \mp \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y_+} F_L
\]

\[
F^\text{em}_2(x, Q^2) = x \sum_q e^2_q (q + \bar{q})
\]

...dominates in most of phase space

Measured over huge kinematic range

well matched to LHC predictions via DGLAP

2-3% precision in bulk of phase space

Highest \(x \) region requires much more luminosity (\(e^+ \) or \(e^- \)) and / or reduced \(E_p \rightarrow \) high \(x \), moderate \(Q^2 \)

Beautifully described by QCD fits

→ strongest constraint on \(u, \bar{u} \)

Constrains gluon and \(\alpha_s \)

via \(\frac{\partial F_2}{\partial \ln Q^2} \sim \alpha_s x g(x) \) (LO QCD)
e^+p Charged Current Cross Section and d at “high” x

Charged Current \((e^+p, 65 \text{ pb}^{-1})\)

- \(Q^2 = 300 \text{ GeV}^2\)
- \(Q^2 = 500 \text{ GeV}^2\)
- \(Q^2 = 1000 \text{ GeV}^2\)
- \(Q^2 = 2000 \text{ GeV}^2\)
- \(Q^2 = 3000 \text{ GeV}^2\)
- \(Q^2 = 5000 \text{ GeV}^2\)
- \(Q^2 = 8000 \text{ GeV}^2\)
- \(Q^2 = 15000 \text{ GeV}^2\)

Promising for d density at $x \sim 0.3$

Higher x Suppressed by \((1 - y)^2\) factor

\[
\tilde{\sigma}_{CC}^+ \sim x(\bar{u} + \bar{c}) + (1 - y)^2 x(d + s)
\]
$$x F_3(x, Q^2) \text{ and } u_v, d_v$$

$$x F_3 = \frac{1}{2y(1-y)} (\tilde{\sigma}_{NC}^- - \tilde{\sigma}_{NC}^+)$$

$$\sim 2u_v + d_v$$

Assumption-free access to valence distributions at largest Q^2 ($\tilde{\sigma}_{NC}^- \gg \tilde{\sigma}_{NC}^+$)

y factors suppress highest x, kinematics suppress lowest x, potentially competitive for $x \sim 0.1$

First “exploratory” HERA-I extractions agree well with predictions

Errors rather insensitive to exact e^+ / e^- sharing within reasonable limits

Total e^+ and e^- luminosity most important for significant progress
Gluon only indirectly determined in DGLAP fits

Important to test with jets, charm, \(F_L \ldots \sim \alpha_s x g(x) \) (LO QCD)

\[
\tilde{\sigma} = F_2 - \left(\frac{y^2}{Y_+} \right) F_L
\]

Sensitivity at highest \(y \to 0.9 \) (\(E'_e \to 3 \text{ GeV} \))

\(F_L \) determination spans 3 orders of magnitude in \(Q^2 \)

Distinguishes between DGLAP and other approaches at low \(Q^2 \)

Better measurements from reduced \(E_p \) running \(\rightarrow \) relax \(F_2 \) assumptions and see \(x \) dependence
Polarisation and HERA-II

CC cross section has linear dependence on polarisation in Standard Model

First measurement of influence of lepton helicity on CC interactions in ep scattering

Polarisation $\sim 30\%$, Luminosity ~ 15 pb$^{-1}$

Effect established at $\sim 2.3\sigma$ level

Similar luminosity collected with opposite helicity and $\sim 40\%$ polarisation

With larger luminosities, sensitivity to PDFs and electroweak couplings

$F_2^{\gamma Z} \sim \frac{1+d/u}{4+d/u}$

Simulation with $\mathcal{L} = 200$ pb$^{-1}$, $P_e = \pm 0.5$
Hadronic Final State Studies and QCD

Bulk of H1 physics programme concerned with understanding QCD through hadronic final state measurements (89/130 physics papers so far)

- Jet production and properties
- Open charm production
- Open beauty production
- Forward physics & QCD cascade dynamics
- Fragmentation
- Energy flow and particle spectra
- Diffractive cross sections / final states
- Tagged leading protons and neutrons
- Inclusive and exclusive vector mesons, DVCS
- Hadron spectroscopy . . .

Many of these measurements are statistically limited thus far

Theoretical progress → most observables can be compared with NLO calculations

Improvements require highest possible \mathcal{L}, independently of beam charge or polarisation
Evidence for a Narrow Anti-charmed Baryon State

Following recent observation of θ^+ pentaquark in $K^0 p$ and $K^+ n$, search for charmed analogue

Use ‘golden’ charm decay channel $D^* - \rightarrow \bar{D}^0 \pi^- \rightarrow K^+ \pi^- \pi^-$ & c.c.
Combine with proton candidates from dE/dx to form $M(D^* p)$

Clear signal with mass 3099 ± 3 (stat.) ± 5 (syst.) MeV ... observed in γp and DIS

Background well modelled by wrong charge $K^\pm \pi^\pm$ combinations and D^* Monte Carlo
51 \pm 11 events (75 pb$^{-1}$)
Compatible yields in $D^* - p$ and $D^* + \bar{p}$

As in strange case, width compatible with experimental resolution (\sim 7 MeV)

Minimal constituent quark composition of such a state is $uudd\bar{c}$... charmed pentaquark?
Fast Track Trigger Status

Required for continued triggering of interesting low p_T final states with track based signatures at high \mathcal{L}

Level 1

- Hit finding with 95% efficiency
- Track segment finding operational
- Coarse segment linking to form tracks
- First L1 trigger implemented for exclusive vector mesons in events with no tagged electron

Level 2/3

- Later stages of trigger being finalised
- Aiming for full commissioning before shutdown

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 μs</td>
<td>25 μs</td>
<td>\approx100 μs</td>
</tr>
</tbody>
</table>

- QT analysis, Track-Segment-Finding
- Track-Segment-Linking, momenta, momentum sums
- Event reconstruction, jets, invariant masses, Δm...

First ρ^0 signal from short test run

$M_{\pi^+\pi^-}$ (GeV)

Entries 57
Recent Progress in Beauty Cross Sections

$\sigma(e p \rightarrow e \bar{b} b X \rightarrow e \mu j X)$ in DIS

Use sample with muons associated with jets

Evaluate beauty contribution using @D fit to . . .

... muon impact parameter (silicon detector)

... p^{rel}_T of muon relative to jet

Results consistent with NLO QCD

Inclusive F^b_2 (and F^c_2) in high Q^2 DIS

Inclusive secondary vertex sample from silicon

b, c contributions from fits to signed impact parameter distribution

For $Q^2 \gtrsim 100$ GeV2, minimal extrapolation to inclusive b cross section

New technique!... First F^b_2 measurement
Overlaps between different final state signatures give new sensitivities
e.g. test semi-inclusive QCD factorisation by predicting diffractive dijet
and charm rates at NLO using diffractive parton densities from F^D_2

Consistent description, but large experimental and theoretical errors
Further progress needs high statistics data at fixed x_{IP} and better systematics
Also improved theoretical errors ... Relax "Regge" factorisation assumption, go to higher scales
2 Roman pot stations near $z = 220$ m

... Efficient triggering and measurement of leading protons in interesting region $|t| < 1 \text{GeV}^2$, $x_{IP} \sim 0.01$

Track reconstruction working ... clear forward peak

First level 1 trigger implemented

Clear ρ peak (untagged γp) from short test run
Summary

• Ongoing analysis of HERA-I data
 … Many new measurements and techniques

• Detector in good shape and taking high quality HERA-II data
 … First physics results obtained with polarised leptons

• Top future priority is highest possible luminosity as soon as possible
 … New level of precision in broadest range of physics topics
 Can be realised with e^+ running, also necessary to clarify high p_T anomalies
 e^- data of interest for some searches and electroweak physics
 Reduced E_p running required for F_L, high x, moderate Q^2 and W dependences

• H1 Collaboration remains firmly committed to full HERA-II programme