Status of HERA

Mathias Vogt, DESY–MPY

30.10.2003

- Status before the Shutdown 2003 (brief summary)
- Modifications during the Shutdown 2003
- Recommissioning after the Shutdown
- First Weeks of Run Period
- Conclusion and Outlook
Status before shutdown 2003

Background in detectors

• direct synchrotron light \rightarrow beam steering & movable collimators
• backscattered synchrotron light \rightarrow synchrotron radiation masks
• e–gas events \rightarrow vacuum
• p–gas events \rightarrow vacuum $\leftarrow e^+$–beam induced

Luminosity, Polarization and Operating

+ peak luminosity of $2.7 \cdot 10^{31}\text{s}^{-1}\text{cm}^{-2}$ verified
 – routinely specific luminosity of $1.7 \cdot 10^{30}\text{s}^{-1}\text{cm}^{-2}\text{mA}^{-2}$ with high currents
 – currents limited by background

+ 51% longitudinal polarization at three IPs (HERMES, ZEUS, H1) with collisions and w/o antisolenoids at ZEUS and H1
 – operating at polarization tunes difficult : strong synchrotron sidebands
 \leftarrow non perfect optical conditions \rightarrow new luminosity optics & more refined procedures

M. Vogt, DESY–MPY
Modifications during the Shutdown

- **Action**: installation of NEG pumps into the GA e–chambers NL/SL
 Aim: reduction of vacuum pressure 10m left of IPs by a factor of 10 ⇒ reduce e–gas background
 Status: done

- **Action**: coating (Cu(substr.)-Ni-Ag-Ni) of absorber 4 (SR/NR 11m)
 Aim: reduction of backscattered synchrotron light by a factor of 1.6
 Problem: coated surface gets distorted during consecutive soldering processes needed to assemble absorber
 Status: solution with enlarged thickness of first Ni layer seems promising replacement of old absorbers postponed

- **Action**: enlargement of pumping slits of absorbers 1 (SR/NR 3.8m) and 2 (SR/NR 6m) & installation of new getter pumps
 Aim: increase the pumping power for inert gases like CH₄ in IRs ⇒ reduction of p–gas background
 Status: done
Modifications during the Shutdown (2)

- **Action:** movable absorber SL/NL 66m
 Aim: more flexible beam orbit at 66m & complete shielding of detectors against synchrotron fan from BI magnet SL/NL 90m
 Status: done

- **Action:** installation of new C5 collimators in H1 and ZEUS
 Aim:
 - closing shielding gap (ZEUS)
 - reduction of backscattering (H1, ZEUS)
 - reduction of HOM losses (⇒ vacuum) by tapering and cooling (H1) and coating (ZEUS)
 - installation of a new getter pump (H1)
 Status: done

- **Action:** installation of synchrotron light masks to protect RF contacts of bellows
 Aim: increase run efficiency
 Status: done

M. Vogt, DESY–MPY
Modifications during the Shutdown (3)

Experiments

- **Action:** re-alignment of GO magnet (H1)
 - **Aim:** better orbit at IR & no more local coupling
 - **Status:** done but one more iteration still desirable

- **Action:** installation of cryo bypass for H1 VFPS
 - **Aim:** create insertion space for H1 VeryForwardProtonSpectrometer
 - **Status:** done

- **Action:** install **new** longitudinal polarimeter
 - **Aim:** increase accuracy and time resolution of polarization measurement
 - **Status:** installed, not yet fully functional
Modifications during the Shutdown (4)

Diagnostics

- **HERA–p**
 - rebuild/repair electronics for BPM system
 → production on the way & old systems repaired
 - installation of a synchrotron light monitor
 → installed, not yet commissioned
 - installation of fast OTR monitor (← shape oscillations)
 → in progress, uncritical

- **HERA–e**
 - new electronics for BPM system → delay in production
 → only small number of prototypes installed
 - synchrotron light monitor repaired

M. Vogt, DESY–MPY
Modifications during the Shutdown (5)

Maintenance

• HERA–\(e\)
 – commissioning of additional fast injection kickers
 – installation of bipolar chopper power supplies for VO & VG magnets S/N
 – improved cooling of cavities

• HERA–\(p\)
 – improved cooling of QR magnet
 – fix (tiny) vacuum leak SR 28m
 – RF : new power tubes, tuner PS changed
 – replacement of the (warm) current connections for the (cold) \(p\)–corrector magnets

all completed
INSERT : Technical Issues during Technical Commissioning

- BU NR : ground fault → replacement took 4 weeks
- ⇒ cavities NR : vacuum conditioning during recommissioning
- e–RF modulator room for transmitter SL basically burned down → reconstruction finished not before end 2003
- ⇒ transmitter SR contaminated → not operational until early recommissioning

BU magnet (NR 60–80m) after removing the e–RF
Recommissioning after the Shutdown

- set up e–ring : (06.08.2003—20.08.2003)
- vacuum conditioning (HOM loss baking at 12 GeV) : (20.08.2003—12.09.2003)
- initial polarization tuning : (16.09.2003—until...)
- ...ground fault at BU NL (the second!) → see “Technical Issues” (25.09.2003)
INSERT : Technical Issues during Recommissioning

• BU NL : ground fault (2nd BU magnet in two months)
 – replacement too time consuming
 – virtual ground of p–main circuit shifted towards real ground fault
 – 9 new coils (= 1/4 of HERA) ordered (production going on)

• in the wake of the ground fault
 – lack of stray field from BUs ⇒ exotic orbit in IR ⇒
 – 20mm horizontal offset in GI magnet SR ⇒
 – more (power) and harder E_{crit} synchrotron radiation downstream ZEUS ⇒

\[\text{Absorber 4 (SR 11m)} : \text{the flange to the } e-\text{beam pipe got asymmetrically heated and vented the south IR} \]
Flanges of Absorber 4 (SR/NR 11m)

- Venting of flange at NR 11m happened before (end 2002)
- Exotic orbits while trying to understand sudden energy- and intensity-dependent \(e^+ \) beam losses
- Potentially severe problem \(\Leftarrow \) venting of IRs !!!!

Cure:
- Stricter orbit control in IRs \(\Leftarrow \) better understanding and better online display of IR–orbits
- Temperature monitoring at all flanges of these absorbers
- Tuning of beam interlock / auto–dump levels
- \(\Rightarrow \) start of run period: very conservative dump levels
 \(\Rightarrow \) \(e^+ \) current limited to \(\approx 18 \) mA
- Additional cooling

Status now: gained confidence in understanding and monitoring dump levels more relaxed \(\Rightarrow \) no more current limitations
Recommissioning after the Shutdown (2)

HERA–p
- geometric aperture at injection
- optics verification/correction (ORM) at injection

HERA–e
- geometric aperture at injection
- optics verification/correction (ORM) at injection
- commissioning of fast injection kickers
- installation of a new luminosity optics
- optics verification/correction (ORM) at luminosity optics
- dispersion measurement at luminosity optics
- measurement of the center frequency
- beam based alignment in IRs N/S
- procedures to allow stable operation at the polarization tunes

ORM at e^+–luminosity optics

M. Vogt, DESY–MPY
First Weeks of Run Period : Luminosity

• started running for experiments on 11.10.2003

• fill pattern : $120 \times 126 \rightarrow n_{\text{coll}} = 114$

 \[\mathcal{L} \propto \frac{I_p I_e}{n_{\text{coll}}} \]

 - background has components $\propto I_e$, $\propto I_e^2$, $\propto I_p I_e$

 \Rightarrow bound on $(I_p I_e)_{\text{max}}$

 - optimum luminosity with background constraints not at 180×189 bunches

• current limits start of run period : detectors : 60×30 mA2

• achieved $\mathcal{L}_s = 1.6 \cdot 10^{30} \text{s}^{-1} \text{cm}^{-2} \text{mA}^{-2}$

 and peak luminosity $\mathcal{L} = 1 \cdot 10^{31} \text{s}^{-1} \text{cm}^{-2}$

 this is not yet perfect :

 - optics errors just recently corrected

 - $\epsilon_x^{(e)}$ too large \iff dispersion not yet perfect

 - current limitations

M. Vogt, DESY–MPY
First Weeks of Run Period: Background

- HERMES, H1 and ZEUS have taken data
- after long shutdown & venting: fast recovery & decent conditions
 - pressure in IRs: improved by factor ≈ 0.5
 - backscattered synchrotron light: problem seems solved
- despite good vacuum at IRs: p-background still 2–3 times too high for operation at full currents
 \rightarrow analysis is in progress & more conditioning needed
- \Rightarrow current limits at start of run period: detectors: 60×30 mA2
- background tuning still an issue

M. Vogt, DESY–MPY
First Weeks of Run Period (3)

Polarization

• routinely operate at polarization tunes
• already achieved 40% polarization (before BU incident)
• now tuning parasitically

Operational Performance

• p–injection/ramp efficiency good: so far 61mA/120 bunches at 920 GeV
• e^+–injection efficiency improved: 40% — 60%
• e^+–ramp more stable: no more dumps triggered by radiation interlocks of micro vertex detectors
• improved online diagnostics, controls, data exchange with experiments, . . .
INSERT : Recent Technical Issues

- last Saturday (25.10.2003) failure of computer hardware in cryogenic system warms up north half ring.
- hardware changed ⇒ plant operational again
- p-ring not recovered until morning 29.10.2003
Summary and Outlook

- program of shutdown successfully completed

- except
 - replacement of absorber 4 (new concept seems promising)
 - upgrade of some of the diagnostic systems ⇒ nothing critical

- several, partly severe, technical problems during shutdown, recommissioning and early running
 - ground faults in BU sections NR and NL → short term fix (virtual ground) & mid term: new coils ordered
 - venting of south IR through heated flange at absorber SR 11m → better monitoring & beam interlock ⇒ solved
 - transmitter SL not functional (modulator room destroyed) → end 2003

- during first weeks already achieved \(\mathcal{L}_s = 1.6 \cdot 10^{30} \text{s}^{-1} \text{cm}^{-2} \text{mA}^{-2} \) and \(\mathcal{L} = 1 \cdot 10^{31} \text{s}^{-1} \text{cm}^{-2} \)
 - still lots of room for optimization → dispersion, optics fine tuning, etc.
 - going to increase \(e^+ \) currents soon

M. Vogt, DESY–MPY
Summary and Outlook (2)

- background: experiments take data
 - quick recovery after shutdown and venting
 - reason for p background not fully understood
 - also plenty room for optimization and conditioning

- achieved 40% polarization during recommissioning
 with three rotators active and uncompensated solenoids
 - polarization tuning interrupted by BU & flange incidents
 - now tuning parasitically
 - confident that $P > 50\%$ can soon be recovered with collisions