Status of HERA

Mathias Vogt, DESY–MPY

30.10.2003

- Status before the Shutdown 2003 (brief summary)
- Modifications during the Shutdown 2003
- Recommissioning after the Shutdown
- First Weeks of Run Period
- Conclusion and Outlook

Status before shutdown 2003

Background in detectors

- \bullet direct synchrotron light \rightarrow beam steering & movable collimators
- backscattered synchrotron light \rightarrow synchrotron radiation masks
- e-gas events \rightarrow vacuum
- *p*-gas events \rightarrow vacuum $\Leftarrow e^+$ -beam induced

Luminosity, Polarization and Operating

- + peak luminosity of $2.7 \cdot 10^{31} \text{s}^{-1} \text{cm}^{-2}$ verified
 - routinely specific luminosity of $1.7 \cdot 10^{30} \text{s}^{-1} \text{cm}^{-2} \text{mA}^{-2}$ with high currents
 - currents limited by background
- + 51% longitudinal polarization at three IPs (HERMES, ZEUS, H1) with collisions and w/o antisolenoids at ZEUS and H1
- operating at polarization tunes difficult : strong synchrotron sidebands \Leftarrow non perfect optical conditions \rightarrow new luminosity optics & more refined procedures

Modifications during the Shutdown

- <u>Action</u>: installation of NEG pumps into the GA *e*-chambers NL/SL
 <u>Aim</u>: reduction of vacuum pressure 10m left of IPs by a factor of 10 ⇒ reduce
 e-gas background
 <u>Status</u>: done
- <u>Action: coating (Cu(substr.)-Ni-Ag-Ni) of absorber 4 (SR/NR 11m)</u> <u>Aim:</u> reduction of backscattered synchrotron light by a factor of 1.6 <u>Problem:</u> coated surface gets distorted during consecutive soldering processes needed to assemble absorber <u>Status:</u> solution with enlarged thickness of first Ni layer seems promising replacement of old absorbers postponed
- <u>Action</u>: enlargement of pumping slits of absorbers 1 (SR/NR 3.8m) and 2 (SR/NR 6m) & installation of new getter pumps <u>Aim</u>: increase the pumping power for inert gases like CH_4 in IRs \Rightarrow reduction of p-gas background <u>Status</u>: done

Modifications during the Shutdown (2)

- <u>Action:</u> movable absorber SL/NL 66m <u>Aim:</u> more flexible beam orbit at 66m & complete shielding of detectors against synchrotron fan from BI magnet SL/NL 90m <u>Status:</u> done
- <u>Action</u>: installation of new C5 collimators in H1 and ZEUS Aim:
 - closing shielding gap (ZEUS)
 - reduction of backscattering (H1, ZEUS)
 - reduction of HOM losses (\Rightarrow vacuum) by tapering and cooling (H1) and coating (ZEUS)
 - installation of a new getter pump (H1)

Status: done

• <u>Action:</u> installation of synchrotron light masks to protect RF contacts of bellows Aim: increase run efficiency Status: done

RF contact with radiation

damage

Modifications during the Shutdown (3)

Experiments

- <u>Action:</u> re-alignment of GO magnet (H1) <u>Aim:</u> better orbit at IR & no more local coupling <u>Status:</u> done but one more iteration still desirable
- <u>Action:</u> installation of cryo bypass for H1 VFPS <u>Aim:</u> create insertion space for H1 VeryForwardProtonSpectrometer <u>Status:</u> done
- <u>Action:</u> install **new** longitudinal polarimeter <u>Aim:</u> increase accuracy and time resolution of polarization measurement <u>Status:</u> installed, not yet fully functional

Modifications during the Shutdown (4)

Diagnostics

- HERA-p
 - rebuild/repair electronics for BPM system
 - \rightarrow production on the way & old systems repaired
 - installation of a synchrotron light monitor \rightarrow installed, not yet commissioned
 - installation of fast OTR monitor (\leftarrow shape oscillations) \rightarrow in progress, uncritical
- HERA-e
 - new electronics for BPM system \rightarrow delay in production
 - \rightarrow only small number of prototypes installed
 - synchrotron light monitor repaired

Modifications during the Shutdown (5)

Maintenance

- HERA-e
 - commissioning of additional fast injection kickers
 - installation of bipolar chopper power supplies for VO & VG magnets S/N
 - improved cooling of cavities
- HERA-p
 - improved cooling of QR magnet
 - fix (tiny) vacuum leak SR 28m
 - $-\mbox{ RF}$: new power tubes, tuner PS changed
 - replacement of the (warm) current connections for the (cold) $p\!-\!\mathrm{corrector}$ magnets

all completed

INSERT : Technical Issues during Technical Commissioning

- BU NR : ground fault \rightarrow replacement took 4 weeks
- \Rightarrow cavities NR : vacuum conditioning during recommissioning
- e-RF modulator room for transmitter SL basically burned down \rightarrow reconstruction finished not before end 2003
- \Rightarrow transmitter SR contaminated \rightarrow not operational until early recommissioning

BU magnet (NR 60–80m) after removing the e–RF

Recommissioning after the Shutdown

- set up p-ring : (25.07.2003-20.08.2003)
- set up e-ring : (06.08.2003-20.08.2003)
- vacuum conditioning (HOM loss baking at 12 GeV) : (20.08.2003—12.09.2003)
- set up collisions : (13.09.2003 16.09.2003)
- initial polarization tuning : (16.09.2003—until...)
- ... ground fault at BU NL (the second!) \rightarrow see "Technical Issues" (25.09.2003)

INSERT : Technical Issues during Recommissioning

- BU NL : ground fault (2-nd BU magnet in two months)
 - replacement too time consuming
 - virtual ground of $p-{\rm main}$ circuit shifted towards real ground fault
 - $\begin{array}{|c|c|} 9 \text{ new coils } (= 1/4 \text{ of HERA}) \text{ ordered} \\ (\text{production going on}) \end{array}$
- in the wake of the ground fault
 - − lack of stray field from BUs \Rightarrow exotic orbit in IR \Rightarrow
 - 20mm horizontal offset in GI magnet SR \Rightarrow
 - more (power) and harder (E_{crit}) synchrotron radiation downstream ZEUS \Rightarrow
- \nwarrow Absorber 4 (SR 11m) : the flange to the e-beam pipe got asymmetrically heated and vented the south IR

INSERT : Technical Issues during Recommissioning (2) Flanges of Absorber4 (SR/NR 11m)

- venting of flange at NR 11m happened before (end 2002)
- <= exotic orbits while trying to understand sudden energy- and intensity-dependent e^+ beam losses
- potentially severe problem \Leftarrow venting of IRs !!!!
- Cure :
 - stricter orbit control in IRs \Leftarrow better understanding and better online display of IR–orbits
 - temperature monitoring at all flanges of these absorbers
 - tuning of beam interlock / auto–dump levels
 - \Rightarrow start of run period : very conservative dump levels $\Rightarrow e^+$ current limited to ≈ 18 mA
 - additional cooling
- status now : gained <u>confidence</u> in understanding and monitoring dump levels more relaxed ⇒ <u>no more current limitations</u>

Recommissioning after the Shutdown (2) <u>HERA-p</u>

- geometric aperture at injection
- optics verification/correction (ORM) at injection

HERA-e

- geometric aperture at injection
- optics verification/correction (ORM) at injection
- commissioning of fast injection kickers
- installation of a new luminosity optics
- optics verification/correction (ORM) at luminosity optics
- dispersion measurement at luminosity optics
- measurement of the center frequency
- \bullet beam based alignment in IRs N/S
- procedures to allow stable operation at the polarization tunes

M. Vogt, DESY-MPY

First Weeks of Run Period : Luminosity

- started running for experiments on 11.10.2003
- fill pattern : $120 \times 126 \rightarrow n_{\text{coll}} = 114$

$$_- \, \mathcal{L} \propto rac{I_p I_e}{n_{
m coll}}$$

 $\begin{array}{l} - \text{ background has components } \propto I_e, \propto I_e^2, \propto I_p I_e \\ \Rightarrow \text{ bound on } (I_p I_e)_{\max} \end{array}$

- optimum luminosity with background constraints \mathbf{not} at 180×189 bunches

- current limits start of run period : detectors : $60 \times 30 \text{ mA}^2$
- achieved $\mathcal{L}_{s} = 1.6 \cdot 10^{30} \text{s}^{-1} \text{cm}^{-2} \text{mA}^{-2}$ and peak luminosity $\mathcal{L} = 1 \cdot 10^{31} \text{s}^{-1} \text{cm}^{-2}$ this is not yet perfect :
 - optics errors just recently corrected
 - $\, \epsilon_x^{(e)}$ too large \Leftarrow dispersion not yet perfect
 - current limitations

First Weeks of Run Period : Background

- HERMES, H1 and ZEUS have taken data
- after long shutdown & venting : fast recovery & decent conditions
 - pressure in IRs : improved by factor ≈ 0.5
 - backscattered synchrotron light : problem seems solved
- \bullet despite good vacuum at IRs : $p\mbox{-background still}$ 2—3 times to high for operation at full currents
 - \rightarrow analysis is in progress & more conditioning needed
- \Rightarrow current limits at start of run period : detectors : $60 \times 30 \text{ mA}^2$
- background tuning still an issue

First Weeks of Run Period (3)

Polarization

- routinely operate at polarization tunes
- already achieved 40% polarization (before BU incident)
- now tuning parasitically

Operational Performance

- *p*–injection/ramp efficiency good : so far 61 mA/120 bunches at 920 GeV
- e^+ -injection efficiency improved : 40% 60%
- e^+ -ramp more stable : no more dumps triggered by radiation interlocks of micro vertex detectors
- improved online diagnostics, controls, data exchange with experiments, ...

INSERT : Recent Technical Issues

- last Saturday (25.10.2003) failure of computer hardware in cryogenic system warms up north half ring.
- hardware changed \Rightarrow plant operational again
- p-ring not recovered until morning 29.10.2003

Summary and Outlook

- program of shutdown successfully completed
- except
 - replacement of absorber 4 (new concept seems promising)
 - upgrade of some of the diagnostic systems \Rightarrow nothing critical
- several, partly severe, technical problems during shutdown, recommissioning and early running
 - ground faults in BU sections NR and NL \rightarrow short term fix (virtual ground) & mid term : new coils ordered
 - venting of south IR through heated flange at absorber SR 11m \rightarrow better monitoring & beam interlock \Rightarrow solved
 - transmitter SL not functional (modulator room destroyed) \rightarrow end 2003
- during first weeks already achieved $\mathcal{L}_{s} = 1.6 \cdot 10^{30} s^{-1} cm^{-2} mA^{-2}$ and $\mathcal{L} = 1 \cdot 10^{31} s^{-1} cm^{-2}$
 - still lots of room for optimization \rightarrow dispersion, optics fine tuning, etc.
 - going to increase e^+ currents soon

Summary and Outlook (2)

- background : experiments take data
 - quick recovery after shutdown and venting
 - reason for p background not fully understood
 - also plenty room for optimization and conditioning
- achieved 40% polarization during recommissioning with three rotators active and uncompensated solenoids
 - polarization tuning interrupted by BU & flange incidents
 - now tuning parasitically
 - confident that P > 50% can soon be recovered with collisions