CCD-based Vertex Detector - LCFI status report

Nicolo de Groot
RAL/Bristol

- Conceptual design and goals
- Detector R&D program at LCFI
 - Development of Column Parallel CCDs and readout electronics
 - Thin ladder program for mechanical support of the sensors
 - Physics design studies
- Summary
Partners: Bristol, Lancaster, Liverpool, Oxford, QMUL, RAL

Assuming 5 development cycles of ~20 months, not unlike LHC experiments

Funded for 3 year by PPARC (2.26M£) from April 2002, with the possibility for further funding

Manpower is ramping up (3 new recruits since February)
Conceptual Design and Goals

- 5 layers at radii 15, 26, 37, 48 and 60 mm;
- Low power, gas cooled;
- High precision, low mass support mechanics;
- Encased in light foam cryostat;
- Minimum number of external connections.

- Thin detector (< 0.1% X_0) for low error from multiple scattering;
- Close to the interaction point for reduced extrapolation error;
- Readout time: ≈ 8 ms for NLC/JLC (read between trains)
 50 µs for TESLA inner layer (read ≈20 times during the train);
- Pixel size ≈ 20 µm x 20 µm, stand-alone tracking, radiation hard, etc.
Large area, high speed CCDs

- Inner layer CCDs: 100×13 mm\(^2\), 2500(V)×650(H) pixels per CCD end;
- Outer layers: 2 CCDs with size 125×22 mm\(^2\), 6250(V)×1100(H) pixels;
- 120 CCDs, 799×10\(^6\) pixels (20 µm square) in total;
- For NLC/JLC: readout time \(\approx 8\) ms in principle sufficient, but not easy to achieve with standard CCDs, Column Parallel CCD is desirable;
- For TESLA:
 - 50 µs readout time for inner layer CCDs: 50 Mpix/s from each CCD column
 - Outer layers: 250 µs readout, 25 MHz from each column
 - Column Parallel CCD is essential
- Satisfy TESLA requirements, but thinking about NLC/JLC as well
- CPCCD for JLC/NLC could be very advantageous
Electronics only at the ends of the ladders;
- Bump-bonded assembly between thinned CPCCD and readout chip;
- Readout chip does all the data processing:
 - Amplifier and ADC with Correlated Double Sampling for each CCD column
 - Gain equalisation between columns
 - Hit cluster finding
 - Data sparsification
 - Memory and I/O interface
- CPCCD is driven with high frequency, low voltage clocks;
- Low inductance layout for clock delivery.

CCD Ladder End
CPCCDs for TESLA:

- Quality of 50 MHz clocks over the entire device (area = 13 cm²):
- Power dissipation:
 - Large capacitive load (normally ≈ 2-3 nF/cm²), needs low clock amplitudes;
 - Low average power (≈ 10 W) for the whole detector, but large peak power (TESLA duty cycle = 0.5%).
- Feedthrough effects:
 - 2-phase drive with sine clocks – natural choice because of symmetry and low harmonics
 - Ground currents and capacitive feedthrough largely cancel

CPCCDs for NLC/JLC:

- Low readout frequency (780 kHz) – in principle few electrons noise could be achieved;
Delivered, testing imminent

- Two phase, pixel size 20 µm × 20 µm;
- Wire/bump bond connections to readout chip and external electronics;
- Two charge transport regions;
- Serious testing in the following months!

Direct connections and 2-stage source followers

1-stage source followers and direct connections on 20 µm pitch
First bump-bondable readout chip (CPR-1)

- Designed by the Microelectronics Group at RAL;
- Voltage amplifiers for the 1-stage SF outputs, charge amplifiers for the direct connections;
- Everything on 20 µm pitch;
- 0.25 µm CMOS process; scalable and designed to work at 50 MHz;
- Smaller chip with ADC arrays and amplifiers already tested;
- Work on next generation chip with 2×2 cluster finding and sparsification has started. Principle demonstrated on 20µm pitch.
A program to design CCD support structures with the following properties:

- Very low mass (< 0.4% X_0 – SLD VXD3)
- Shape repeatability to few microns when temperature cycled down to ≈ -100 °C;
- Compatible with bump bonding;
- Overall assembly sufficiently robust for safe handling with appropriate jigs;

Three options:

- Unsupported CCDs – thinned to ≈ 50 µm and held under tension
- Semi-supported CCDs – thinned to ≈ 20 µm and attached to thin (and not rigid) support, held under tension;
- Fully-supported CCDs – thinned to ≈ 20 µm and bonded to 3D rigid substrate (e.g. Be)
FEA simulations continuing:

- Distortions of only few μm, optimise adhesive pitch and size;
- Silicone adhesive: NuSil, excellent at low temperature
- Layer thickness $\approx 0.12\% X_0$

XY stage for 2-dimensional profiling being assembled:

- Laser displacement meter
- Resolution 1 μm
- Models made from steel + unprocessed Si will be measured
Profile of silicon with respect to 200 micron beryllium

- 20 micron thick silicon
- 40 micron thick silicon
- 60 micron thick silicon

distance along model (mm)

displacement from beryllium (microns)
The design of the VXD should be driven by the physics requirements:

- 2 configurations, 5 layer single thickness and 4 layer double thickness
- Make single muon and pion tracks for all p’s and θ’s in Brahms. Fit the distributions
- Include the parametrizations in Simdet
- Biggest effect from removal of the inner layer
- Provide to physics groups
Clear performance difference between configurations
Charm suffers most, B tagging is “easy”
Good agreement between Brahms and Simdet (T. Kuhl)
Vertex Charge

- New procedure to attach track to vertices
- Charged B, up to 89% correct tag, 6-8% worse for 4 layer double thickness configuration
- Charged D, excellent purity, less of a difference between the configurations
Physics Plans

- Neutral B: dipole
- Maintain, develop and improve tools
- Provide them to the physics community so we can get feedback on detector parameters from various physics channels
- Make a transition to new C++/Java environment
Detector R&D work at the LCFI collaboration:

- Development of fast column parallel CCD and its readout chip;
- Precision mechanical support of thinned CCDs.
- Physics Design Studies

Most aspects of the R&D are applicable to all proposed LC machines;

- High speed CPCCDs are mainly for TESLA, however NLC/JLC likely to benefit from slow CPCCDs;
- Significant work is required, challenging combination of chip size and speed;
- More results to follow in a couple of months.

More information is available from the LCFI’s web page: http://hep.ph.liv.ac.uk/~green/lcfi/home.html