[LgDashBoard2@/e409/e116959/e119238][getObjProperty]: key=title[py] Traceback (most recent call last): File "/home/zeoclients/parts/products/zms/_objattrs.py", line 679, in getObjProperty value = metaObjAttr['py'](zmscontext=self) File "/home/zeoclients/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 313, in __call__ return self._bindAndExec(args, kw, None) File "/home/zeoclients/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 350, in _bindAndExec return self._exec(bound_data, args, kw) File "/home/zeoclients/parts/zope2/lib/python/Products/PythonScripts/PythonScript.py", line 328, in _exec result = f(*args, **kw) File "Script (Python)", line 6, in LgDashBoard2.title UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 13: ordinal not in range(128)

News-Suche

Meldungen vom Forschungszentrum DESY

https://www.desy.de/e409/e116959/e119238 https://www.desy.de/aktuelles/news_suche/index_ger.html news_suche news_search ger 1 1 8 both 0 1 %d.%m.%Y Pressemeldung
ger
19.05.2015
Zurück

Eine Bremse für Röntgenstrahlen

Nukleare Quantenoptik kontrolliert und verlangsamt Röntgenlicht

Physiker des Heidelberger Max-Planck-Instituts für Kernphysik haben in Kooperation mit DESY und der Universität Jena erstmals zwei grundlegende Effekte der Quantenoptik mit Atomkernen für Röntgenlicht demonstriert. Durch resonante Streuung an einer Dünnschicht-Eisenprobe konnten sie Welleneigenschaften von Lichtpulsen im Röntgenbereich gezielt kontrollieren und diese gegenüber der Lichtgeschwindigkeit um einen Faktor 10.000 verlangsamen. Die Forscher stellen ihre Arbeit in zwei Beiträgen im Fachblatt „Physical Review Letters“ vor.

Ausbreitung von Röntgenpulsen in einer dünnen Eisenfolie. Die zur Mitte stark ansteigenden Linien zeigen die extreme Verlangsamung des Röntgenlichts, wenn dieses die Kernresonanz der 57Fe Atome anregt. Bild: Kilian Heeg/MPIK
Die Kontrolle der Wechselwirkung von Licht und Materie beflügelt seit Jahrhunderten die Aktivitäten von Naturwissenschaftlern aller Disziplinen. Ein enormer Durchbruch war dabei die Erfindung des Lasers vor über 50 Jahren, der es heutzutage erlaubt, die Wechselwirkung von Licht und Materie auf atomarer Ebene präzise zu kontrollieren. Dies ist das Gebiet der Quantenoptik, die hauptsächlich im sichtbaren und infraroten Bereich angewendet wird. Inzwischen gibt es mit Synchrotrons und Freie-Elektronen-Lasern äußerst leistungsfähige Strahlungsquellen für Röntgenstrahlung mit Laserqualität. Dies erweitert das Gebiet der Quantenoptik von der Wechselwirkung mit der Atomhülle auf Strahlungsübergänge in Atomkernen.

Physiker des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK) haben in Zusammenarbeit mit Gruppen von DESY und der Universität Jena am Synchrotron PETRA III bei DESY in Hamburg und an der European Synchrotron Radiation Facility (ESRF) in Grenoble in zwei neuen Experimenten nukleare Quantenoptik an Eisenkernen demonstriert. Im ersten Experiment diente das Röntgenlicht als Werkzeug, um nach der Wechselwirkung präzise Informationen über die untersuchten Eisenkerne zu erlangen. Im zweiten Experiment waren die Rollen vertauscht, und die Eisenkerne wurden verwendet, um die Ausbreitungsgeschwindigleit von Röntgenpulsen kontrolliert abzubremsen, was vielfältige Anwendungen erschließt. Die konzeptionelle Federführung und die theoretische Modellierung lag dabei bei der der Gruppe von Jörg Evers in der Abteilung für theoretische Quantendynamik des MPIK, während die experimentelle Vorbereitung und Durchführung von der Gruppe um Ralf Röhlsberger bei DESY koordiniert wurde.

Kernstück der Experimente ist eine bei DESY hergestellte Dünnschicht-Probe aus Eisenatomen, eingebettet zwischen Röntgenstrahlung reflektierenden Schichten. Diese wird im flachen Winkel mit Röntgenlicht bestrahlt und das reflektierte Licht gemessen, wobei im gewählten Frequenzbereich die Eisenkerne resonant wechselwirken. Im ersten Experiment, durchgeführt am Synchrotron PETRA III bei DESY, diente die Probe als sogenanntes Röntgen-Interferometer: Die reflektierte Strahlung enthält zum einen Beiträge, die durch die resonante Wechselwirkung mit den Eisenkernen verzögert wurden. Zum anderen enthält sie nicht-resonante Beiträge, die nicht an den Kernen gestreut wurden. Die Verzögerung durch die Eisenkerne führt zu einer Verschiebung der Wellenfronten der beiden Beiträge. Die resonante Streuung erfolgt in einem schmalen Frequenzband, während die übrige reflektierte Strahlung breitbandig ist. Durch Überlagerung (Interferenz) dieser beiden Anteile ergibt sich ein sogenanntes Fano-Profil, dessen asymmetrische Linienform von der Verzögerung durch die Eisenkerne abhängt. Diese kann im Experiment auf einfache Weise über den Reflexionswinkel kontrolliert werden. Aus der Linienform lässt sich exakt die Verzögerung durch die Eisenkernene extrahieren, was die Basis für eine vollständige Charakterisierung ihres Quantenzustands im Röntgenbereich bildet. Eine weitere mögliche Anwendung ist die hochpräzise Stabilisierung von Röntgeninterferometern.

Kilian Heeg hat im Rahmen seiner Doktorarbeit am MPIK sowohl durch Modellrechnungen als auch im Experiment die wesentlichen Beiträge zu der Studie geliefert. Die Motivation für das zweite Experiment schildert er so: „Einerseits besteht Bedarf an möglichst schmalbandiger (energiescharfer) Röntgenstrahlung, andererseits möchten wir in Zukunft nichtlineare Effekte in der nuklearen Quantenoptik demonstrieren.“ Voraussetzung dafür ist es, die Wechselwirkung zwischen Röntgenlicht und Eisenkernen zu verstärken. Hierzu kontrollierten die Physiker die Wechselwirkung mit den Eisenkernen derart, dass die eingestrahlten Röntgenpulse erheblich verlangsamt wurden – und zwar auf weniger als ein Zehntausendstel der Lichtgeschwindigkeit im Vakuum. Die „normale“ Verlangsamung von sichtbarem Licht in einem Medium wie Glas beträgt hingegen nur etwa 30 Prozent. Die starke Verlangsamung konnte erreicht werden, indem die einzelnen zum Röntgenpuls beitragenden Lichtwellen durch die Wechselwirkung mit den Eisenkernen geeignet gegeneinander verzögert wurden. Zur Detektion des verlangsamten Lichts nutzten die Physiker trickreich die Eigenschaft der Eisenprobe, bei resonanter Streuung die Polarisation des Röntgenlichtes zu drehen. Ein entsprechendes leistungsfähiges Polarimeter, das an der Universität Jena entwickelt wurde, erlaubt den ungewünschten nicht-resonanten Anteil zu unterdrücken. Damit war der verlangsamte Puls zugänglich.

„Um diesen Effekt direkt zu messen, haben wir eine dünne Eisenfolie in den Strahlengang eingebracht, die mit dem gleichen Kernübergang wie in der Probe einen schmalen Teil des ansonsten sehr breiten Frequenzspektrums des Röntgenlichts herausschneidet“, erläutert Gruppenleiter Jörg Evers. Dies führt dazu, dass der sehr kurze Röntgenpuls in seinem zeitlichen Verlauf eine echoartige Serie von Nachpulsen erhält. Diese erscheint auch bei dem resonant gestreuten verlangsamten Licht – aber eben um eine Zeit ? verzögert. Durch Bewegung der Eisenfolie lässt sich deren Absorptionsfrequenz gegenüber der Probe durch den Dopplereffekt verstimmen und so die Verzögerung kontrollieren, die bis zu 35 Nanosekunden beträgt. Das „langsame“ Röntgenlicht kann die Wechselwirkung mit den Eisenkernen effektiv erhöhen. Damit hofft die Gruppe um Jörg Evers, einen Zugang zu nichtlinearer Wechselwirkung im Röntgenbereich zu gewinnen, die bisher nicht beobachtet werden konnte.


Originalveröffentlichungen:
Interferometric phase detection at x-ray energies via Fano resonance control; K. P. Heeg, C. Ott, D. Schumacher, H.-C. Wille, R. Röhlsberger, T. Pfeifer, and J. Evers; „Physical Review Letters“ 114, 207401 (2015); DOI: 10.1103/PhysRevLett.114.207401

Tunable sub-luminal propagation of narrowband x-ray pulses; K. P. Heeg, J. Haber, D. Schumacher, L. Bocklage, H.-C. Wille, K. S. Schulze, R. Loetzsch, I. Uschmann, G. G. Paulus, R. Rüffer, R. Röhlsberger, and J. Evers; „Physical Review Letters“ 114, 203601 (2015); DOI: 10.1103/PhysRevLett.114.203601