Aging Phenomena in Gaseous Detectors

Aging Tests of Full Scale CMS Cathode Strip Muon Chambers

CMS Endcap Muon Collaboration

Oleg Prokofiev

Fermilab, Batavia, IL, USA

Aging Test Goals

- Large (2/3) chamber area irradiated, accumulated dose > 30 LHC years
- Two rounds of ageing tests:

premixed gas, open loop gas system, 1 volume/day (2000)

closed loop gas system, 4 volume/day, 5% refresh gas (2001)

Endcap Muon System

CMS Detector

EMU System Parameters

- 540 Cathode Strip Chambers (largest 3.4m x 1.5m)
- 6000 m² sensitive area
- 65 m³ gas volume
- 2 500 000 anode wires
- 150 µm space resolution
- 25 ns bunch crossing resolution

Chamber Design

Trapezoidal Six Layer Cathode Strip Chamber

Chamber parameters:

- 50/200 µm anode/guard wire diameter
- 3.12 mm wire spacing
- 4.75 mm gap (anode cathode)
- 250/500 gr anode/guard wire tension
- High voltage segmentation

Gas mixture: 40% Ar + 50%CO₂ + 10%CF₄

Gas gain $> 10^5$

High Voltage – 3.7 kV

Chamber Materials, Components and Chemicals

Chamber material:

<u>Panels</u> - FR-4 sheets + polycarbonate core <u>Gap bars, anode bars, spacers</u> - FR-4 <u>Anode wires</u> - LUMA gold plated tungsten <u>Guard wires</u> - gold plated CU-Be guard

Components:

<u>Capacitors</u> - ceramic, 1nF, 7.5 kV <u>Resistors</u> - carbon composite <u>O-Ring</u> – rubber fluorocarbon

Chemicals:

Epoxy - 2216, part A and B (contractual epoxy) Epoxy – Epolite 5313 + hardener (wire gluing) <u>RTV</u> - 41 + curing agent (outside chamber sealing) <u>Solder wire</u> Almit KR-19 SH RMA , Seika Corp. (new product)

Ageing Setup and Conditions

Gamma Radiation Facility (CERN):

¹³⁷Cs (E_{γ} =661 keV), 740 GBq

Rate in the chamber

- ~ 100 times of that at LHC
- ~ 15-20 kHz/cm²
- ~ 5 kHz/cm of wire

Radiation exposure (for planes 2,3,4,5):

- ~ 3 5 months (~40 LHC years)
- ~ 1 C/cm², or ~ 0.3 C/cm of wire (0.8 C/cm per 10 LHC years)
- Reference Planes (#1, #6) HV is off during irradiation

Aging Test at GIF

Gas and Gas System

2000

- Gas mixture (premixed) Ar/CO₂/CF₄ - 40/50/10
- Purity of components, %
 - Ar 48(99.998) $CO_2 48$ (99.998) $CF_4 45$ (99.995)
- Gas System
 - Open loop
 - Flow rate 3 l/h (1 V/day)
 - Gas pipes:
 - 23 m of copper tubes
 - 13 m of plastic tube (rilsan)

2001

• Gas mixture (premixed) Ar/CO₂/CF₄ - 40/50/10

• Purity of components, %

	1	2
Ar	99.998	99.996
CO ₂	99.998	99.990
CF ₄	99.995	99.995

- Gas System
 - Closed loop
 - Flow rate nominal (12 l/h,
 - or 4 V/day)
 - Fresh gas 5% of nominal (0.6 l/h)
 - Gas pipes (copper):
 - 50m input tube (ϕ 12 mm)
 - 50m input tube (\oint 16 mm)
 - cleaned according to CERN spec.

Closed Loop Circulation Gas System

Monitored Chamber Parameters

- > Anode Current during irradiation
- Anode GIF rates
- Dark current
- Anode noise rates
- Strip- to-strip capacitance

Chamber Gas Gain

Aging Test 2001 Accumulated Charge

Gas Gain

Aging Test 2000

Aging Test 2001

Gas Gain remained unchanged

Dark Current

<u>Dark current</u> increased from ~1 nA to typically ~10 nA per plane

Dark Rates

Noise count remained unchanged for both runs in 2000 and 2001

Strip to Strip Resistance

Resistance between Strips

Changed from ~100 to ~ 10 - 100 GOhm during irradiation

Oleg Prokofiev

Aging Phenomena in Gaseous Detectors, DESY, Hamburg 2001

Cathode Plane Deposits

Cathode planes:

- thin uniform layer of deposits:
- extends beyond the irradiated zone
- also, found on the last plane (along gas flow) that had HV off during irradiation
- Composition of deposits: O, F, Si

Anode Wires

Anode wires:

- ✓ Wires stayed fairly clean
- With some minor deposits, sporadically scattered

Summary

- Aging tests with two CMS Cathode Strip Chambers were performed
- In one of the two tests a closed loop gas system was used
- At accumulated dose of 0.3-0.4 C/cm (30 40 LHC years) no significant changes in chamber performance (dark current, noise count, gas gain, efficiency) were observed
- Strip-to-strip resistance decreased but stayed well within technical specification (> 1.0 MOhm)
- Accumulation of deposits on the cathode planes was observed while wires stayed fairly clean

All test showed that CMS CSCs with Ar/CO2/CF4 gas mixture could be run in the LHC environment without appreciable aging effects