"International Workshop On Aging Phenomena in Gaseous Detectors" DESY-Hamburg 3-October-2001

Aging Studies for the HERA-B Outer Tracker

Cristóbal Padilla (DESY-HH) * (on behalf of the HERA-B OTR Collaboration)

Outline:

1. Design Constraints.

2. Implications for Aging Studies.

3. Mapping the HERA-B Conditions to a Test Beam.

4. Observations and Validation of Building Techniques.

5.Summary.

* Now at CERN (EP-Division)

Design Constraints: Particle Flux

4 superimposed p(920 GeV)-N interactions

Design Constraints: Size

The World Largest Tracker

100 modules with installed in 26 gas boxes

Detector Constraints: Building Technique

Sensitive area Signal transmission area Different wires. Open geometry EASY WIRING

Soft structure in terms of overpressure ➡External gas volume, so called, GAS BOX

Solder tin and other materials inside the drift cell

Wednesday October 3rd, 2001

Implications for Aging Studies

• Large surface area.

Drift distance up to 5 mm.

- Maximum drift time of 96 ns.
- Some chambers inside a magnetic field of up to 0.8 Tesla.

Need for a fast (containing CF_4) gas mixture ($v_D \sim 100 \mu m/ns$).

Mixtures studied: • CF₄/CH₄ : 80/20. • Ar/CF₄/CH₄ : 74/20/6. • Ar/CF₄/CO₂ : 65/30/5.

• Non-closed cell geometry.

- Gas box in contact with the counting gas.
- Large gas volume.

Expensive gas (CF₄).

Need a re-circulating gas system and special care to all the materials of the gas box.

(look at K. Dehmelt talk and M. Hohlmann poster)

Total Accumulated Charge

- 10 MHz "event" rate.
- Up to 30 % cell occupancy.
- $1/r^2$ particle density dependence.
- Closest point at 20 cm from the beam pipe.
- Attachment in CF_4 .
- Electronics noise vs. gain
 - Adjust effective gain to 20k.

Maximum radiation dose/cm/year:

3 MHz particle rate
30-35 primary el./particle
100 fC/particle
10⁷ seconds/year.

 \sim 470 mC/cm/year

Detectors must be tested for aging up to 2-3 C/cm.

First Tests in HERA-B

Malter effect in installed modules after ~ 0.5 mC/cm ofaccumulated radiation dose

targ

40

30

20

10

0

-10

Effect observed with gas mixtures containing CH_4

"Similar" effect seen with gas mixtures containing CO₂

Strategy: Two Lines of R&D

- Similar but smaller chambers had shown no aging effects up to 4.5 C/cm of integrated radiation dose in X-rays.
- Other tests in HERA-B showed that adding alcohol to the gas might stop producing Malter effect in the chambers.

However, foils are deformed (not viable solution).

• Tests in HERA-B are impractical.

Possible Beams: X-rays and Similar

"Effect" stands for fast appearance of Malter effect

Facility Radiation Type	Acc. Charge	Radiation Density	Irradiation area	Gas Mixture	Effect seen?
Zeuthen	5 C/cm	1.5 μA/cm	$\sim 1 \text{x3 cm}^2$	CF_4/CH_4	NO*
X-Ray Mo (35 keV)					
Dubna	6 C/cm	5 μA/cm	$\sim 0.5 \text{x1 cm}^2$	Ar/CF ₄ /CO ₂	NO*
X-Ray Cu (8 keV)					
HMI	10 mC/cm	0.1-3 µA/cm	~100x 30 cm ²	Ar/CF ₄ /CH ₄	NO*
Electron 2.5 MeV					
HD	~ mC/cm	~0.1 µA/cm	~46x 30 cm ²	Ar/CF ₄ /CH ₄	NO*
X-Ray Cu (8 keV)					

* Malter effect could be triggered in chambers already irradiated in hadronic beams but that did not showed it there

X-rays cannot trigger the Malter effect

independently of their energy or Radiation Density.

Gas mixture does not play a role

Very fast anode aging observed (difficult to see in HERA-B)

Possible Beams: Hadronic Sources

Facility Radiation Type	Acc. Charge	Radiation Density	Irradiation area	Gas Mixture	Effect seen?
Rossendorf	5 mC/cm	0.3 µA/cm	$\sim 9 \times 9 \text{ cm}^2$	Ar/CF ₄ /CH ₄	NO
Protons 13 MeV/c					
Rossendorf	3 mC/cm	0.6 µA/cm	~1x3 cm ²	Ar/CF ₄ /CH ₄	NO
α-part, 28 MeV/c					
PSI	~ mC/cm	0.2 µA/cm	$\sim 0.5 \times 0.5 \text{ cm}^2$	Ar/CF ₄ /CH ₄	NO
p 70 MeV/c					YES*
PSI	~ mC/cm	0.02 µA/cm	$\sim 12 x 22 \ cm^2$	CF ₄ /CH ₄	YES
π/p 350 MeV/c					
Karlsruhe	~ mC/cm	0.02 µA/cm	\sim 7x7 cm ²	Ar/CF ₄ /CH ₄	YES
α-part, 100 MeV/c					
HERA-B	~ mC/cm	0.03 µA/cm	$100x30 \text{ cm}^2$	All gas	YES
P(920 GeV)-N				mixures	

* Effect could be ignited increasing the irradiation area

A chamber in which the cathode was coated with carbon spray did not show Malter effect

R&D Beam and Open Questions

- Electrons or X-rays do not produce Malter effect.
- Hadrons above certain energy clearly produce Malter effect after few mC/cm (as in HERA-B).
- Charge density seems not to play a decisive role.
- Irradiation area above certain threshold seems necessary.

OPEN Questions/To solve:

- Indications that the foil is responsible of Malter effect (coating might help).
- Fast anode aging also needs to be solved.
- All building materials (glues, plastics, wires) and techniques need to be validated.

Karlsruhe Setup: Matrix Diagonalization

Test detector building techniques by varying only one parameter at a time.

Careful test module design.

Tests of:

- Foil Coatings.
- Glues.
- Building Materials.
- Solder tin cleaning.
- Gas flow option.
- Effects of gas contaminants.
- Material cleaning procedures.
- Use of anticontact paste in template.

Karlsruhe Setup: Matrix Diagonalization

Kapton and Aluminized Millar for gas box windows

Electro-polished stainless steel gas tubing

..Lots of modules

Careful positioning of chambers in the beam

...And careful gas monitoring

Fast Anode Aging with Ar/CF₄/CH₄

Wire Inspection

Wire from a aged chamber

Malter Effect Reproduced

- There might be in interplay between the fast anode aging and the Malter effect phenomena.
- In Ar/CF₄/CO₂ gas mixture, spurious rest currents were observed with uncoated Pokalon-C cathode foil, but not so clear Malter Effect.

Malter effect was never observed in coated chambers independently of the running gas and building techniques.

Recovery: Exchange CH₄ – CO₂

Start irradiation after gas exchange

A chamber previously irradiated with $Ar/CF_4/CH_4$ that showed fast anode aging and Malter effect was completely recovered after several hours of irradiation with $Ar/CF_4/CO_2$

(CF_4 wire and cathode etching??)

Malter Effect in Pokalon-C Chambers

- Electron Microscopy of the aged Pokalon-C foil show that there are some "islands" of non-surface conductivity in the foil. (see G.Bohm poster)
- Three factors are abosulutely needed to create the Malter effect
 - ▶ Non-coated Pokalon.
 - ► Hadronic beam above certain energy.
 - \triangleright CH₄ in the gas or some impurities (HERA-B).

Formation Mechanism:

- Hadrons produce permanent changes in the foil.
 - Explains "after-triggering"
- The foil develops a non-insulated layer around the non-conductive islands with some gases and/or impurities.
 - Explains "area-effect"
 - Explains "gas-impurities" need.

Adopted Solutions for the OTR

Coat the 12000 foils with 50 nm Cu (good adhesion to plastics) + 40 nm Au (gas contact material)

Materials validated up to 1.2 C/cm

- FR4 supporting bridges
- Glues (Stycast and Conductive Glue)
- Wires (W/Au and Cu/Be)
- ULTEM end pieces
- Aluminum in contact with gas
- Possibility to use Rilsan tubing

Procedures validated up to 1.2 C/cm

- Soldering points do not need to be cleaned from colophony
- Anti-contact paste in the template can be used (out-gassing proven)
- Gas exchange (with no CH_4 content) of ~ 1 vol/h does not produce aging

Permanent Dark Currents

- Chambers running at a gas exchange of ~0.1 vol./h show permanent dark currents after ~300 mC/cm of accumulated irradiation charge (Ar/CF₄/CO₂).
- A similar effect was already observed after a test in X-rays in Heidelberg.
- Analysis of strips show changes.

Big Kapton window

Strips have become conductive

Implications for the Gas System

Wire Etching: Gas System Constraints

Several tests indicate that the wire etching is present if water concentration is too low (< 100 ppm) or also too high???

(see A.Schreiner and other talks)

Summary and Conclusions (General)

- Aging tests must be done in very "similar" conditions to the place where the detector is going to run.
 - ▶ The problem is to realize the parameters that define "similar".
 - ► Charge density.
 - ►Irradiation area.
 - ► Particle type and energy.
 - ► Space charge vs. accelerated aging.
 - ➡ X-rays alone might not be sufficient.
- Materials and building techniques must be carefully scrutinized
 - ➡ Use only "allowed" materials and gasses.
 - Carefully check the way detectors are built.
- Attention must be paid to the constraints in the design of the gas system
 - Test of purifiers.
 - Thresholds in impurities.

Summary and Conclusions (HERA-B)

A hadron beam above several MeV of energy resembles some of the key conditions (in terms of aging) of HERA-B

In the HERA-B OTR materials and detector building techniques have been tested up to 1.2 C/cm (~2.5 running years)

The HERA-B OTR does not show aging effects if the water content in the gas is maintained between tight margins (100 –500 ppm), something non-trivial in a huge gas system (with recirculating purified gas at a flow of with 20 m³/h)

TEST, TEST, TEST

....but with very careful parameter control and thinking