Atlas Drift Tube ageing test

Michael Kollefrath
Sven Kircher
03. October 2001
University of Freiburg

• Goal of Drift Tube ageing test
• Setup
• Ageing as function of total charge [mC/cm]?
• Influence on the choice of gas for ATLAS
• Conclusion
Goal of Drift Tube ageing tests

Drift Tubes for the precision chambers of the Atlas Muon Spectrometer

Single Tubes
- Number: 380,000
- Length: up to 6m

Rates:
- high γ and n Background
- Counts up to **300Hz/cm** over **10 years** of operation

DT Operating Point
- Gas gain: 2×10^4
- High resolution: **80μm**

Goal:
- Lifetime > 0.6 C/cm
 (with security factor 5)

Gas Mixtures
- **Ar-CO$_2$ 93-7**, "Baseline Gas"
- **Ar-CH$_4$-N$_2$-CO$_2$ 94-3-2-1**, "R&D Gas"
Parameters influencing ageing

• Parameters to optimize ageing performance of detector

• Parameters of ageing tests
 (needed for extrapolation, I will focus my talk on this point)
Optimization of Ageing-Performance

• Cathode/Anode coating
• Cathode/Anode cleanliness
• Gas mixture
• Gas additives
• Gas flow
• Gas purity

red = tested in Freiburg

contact:

kollerath@physik.uni-freiburg.de

http://hpfrs6.physik.uni-freiburg.de/~atlas
How to make an ageing test?

An ageing test should be made in a **short time** on **laboratory scale** and be reliable!

Possibilities to accelerate ageing tests:
increased **gas gain** and **irradiation rate**

- Irradiation length
- High-Voltage
- Irradiation Rate
- Primary Ionisation

Can we conclude anything from the collected total charge [mC/cm]?
Experimental discrepancies

using $\text{Ar-CH}_4\text{-N}_2\text{-CO}_2$

<table>
<thead>
<tr>
<th>Setup</th>
<th>Freiburg 1998</th>
<th>CERN X5-GIF 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No ageing up to 3000 mC/cm</td>
<td>All (48) tubes inefficient after 80 mC/cm</td>
</tr>
<tr>
<td>Tube cleanliness</td>
<td>higher</td>
<td>lower</td>
</tr>
<tr>
<td>HV</td>
<td>3350 Volt</td>
<td>3400 Volt</td>
</tr>
<tr>
<td>Irradiation zone</td>
<td>2.5 cm</td>
<td>340 cm</td>
</tr>
<tr>
<td>Irradiation rate</td>
<td>0.5 – 13kHz/cm</td>
<td>1.8 kHz/cm</td>
</tr>
<tr>
<td>Gas flow/ Volume exchange time</td>
<td>2 – 240 hours</td>
<td>2.5 hours</td>
</tr>
<tr>
<td>Gas system</td>
<td>all parallel</td>
<td>each 3 serial</td>
</tr>
<tr>
<td>Photon energy</td>
<td>14, 18 and 60 keV</td>
<td>660 keV</td>
</tr>
</tbody>
</table>

Cathode cleanliness and gas flow alone could not explain the different results.

03.10.2001
Michael Kollefrath, University of Freiburg
6
• 1995 Start of ageing tests
• Active zone (irradiation zone) 1.5 to 8 cm
• Total length of the tube: 30 cm
• 4 different irradiation rates (4 distances)
• 5 Setups \(\rightarrow \) 80 individual tubes
4 ways to measure the drift tube efficiency

1.) **Current** (every 30min)

2.) **Count Rate** (every 30min)

3.) **Mean Pulse Height** (every 3days)

4.) **Ageing** (4 times in a MDT-operation time)

\[
\text{ageing} := \frac{\text{ADC (irradiated zone)}}{\text{ADC (Not Irradiated zone)}}
\]

Independent of electronics, gas mixture, high voltage

03.10.2001

Michael Kollefrath, University of Freiburg
Example of an inefficient Tube

Tube is defined to be inefficient if:
- Mean Pulse Height < 70%
- Ageing-Ratio < 70%

Typical:
- Onset of Malter-Effect after death
- Drop of Count Rate
Ageing dependence on High Voltage

Lifetime = Total Charge/Length up to 70%-Level of pulse height

Equal Colors = identical parameters except Voltage

Strong HV-Dependence of Lifetime
Ageing dependence on irradiation rate

Lifetime = Total Charge/Length up to 70%-Level of pulse height
Equal Colors = identical parameters except irradiation rate

Strong rate-dependence of Lifetime
Ageing dependence on irradiation zone

Lifetime = Total Charge/Length up to 70%-Level of pulse height
Equal Colors = identical parameters except irradiation zone

Strong length of irradiation zone dependence of Lifetime
Dependences of lifetime in Ar-CH$_4$-N$_2$-CO$_2$

Strong dependence of the lifetime on HV, irradiation rate and irradiation zone.

Extrapolation to Atlas-Operating Point (600cm, 300Hz/cm, 3130V) not possible.

“safe ageing test”: full length, higher rate & HV \[\Rightarrow X5 \]

Is this behaviour independent from gas-mixture?
Interpretation of the ageing dependences

Irradiation in gas mixtures with hydro-carbons can produce ageing

Polymerisation on the wire reduces the gas gain (experimental result)

Does ageing depend on chemical concentration?
(That is up to now an unchecked idea)

Chemical concentration increases:

• with higher HV
• with higher irradiation rate
• in serial gas systems with position in the series

• along direction of gas flow
• with longer irradiation zone
Dependence of lifetime in Ar-CO$_2$ 93-7

Ar-CO$_2$ (93-7) :
- Number: 21 Tubes
- HV: 3400V, 3500V (HV$_{ATLAS}$=3080 Volt)
- Irradiation Zone: 2,5 – 8 cm

⇒ 100% efficient after 1,3 C/cm (avr.)
⇒ one tube 4,8 C/cm

Ar-CO$_2$ (90-10) :
- Number: 47 Tubes
- HV: 3400V, 3440V
- Irradiation Zone: 3,4 m

⇒ 100% efficient after 0,6 C/cm

(no sign of ageing)
However

Drift tubes in a safe gas like Ar-CO$_2$ can age if there are small quantities of impurities in the tube.

We have seen ageing in Ar-CO$_2$, when the tube is sealed with Araldit (Contact surface $<<$ 1mm2) (Araldit AW106, HV 953).
Conclusion

- Ageing has a strong dependence on HV, irradiation rate and length of irradiation zone.

- To make an useful ageing test, you have to study the dependence on these parameters.
 A safe test in Ar-CH$_4$-N$_2$-CO$_2$: full length, higher rate and higher HV.

- A safe gas for the Atlas Muon Drift tubes is Ar-CO$_2$ 93-7.