Atlas Drift Tube ageing test

- Influence on the choice of gas for ATLAS
- Conclusion

Goal of Drift Tube ageing tests

Drift Tubes for the precision chambers of the Atlas Muon Spectrometer

Single Tubes

•Number : 380000

•Length : up to 6m

Rates :

high γ and n Background ⇒Countrates up to 300Hz/cm over 10 years of operation

DT Operating Point

•Gas gain: **2*10**⁴

•High resolution: 80?m

Ar-CO₂ 93-7 ,,Baseline Gas" Ar-CH₄-N₂-CO₂ 94-3-2-1 ,,R&D Gas"

Parameters influencing ageing

•Parameters to optimize ageing performance of detector

Parameters of ageing tests (needed for extrapolation, I will focus my talk on this point) Optimization of Ageing-Performance

- Cathode/Anode coating
- Cathode/Anode cleanliness
- •Gas mixture
- •Gas additives
- •Gas flow
- •Gas purity

red=tested in Freiburg

contact:

kollerath@physik.uni-freiburg.de

http://hpfrs6.physik.uni-freiburg.de/~atlas

How to make an ageing test?

An ageing test should be made in a **short time** on **laboratory scale** and **be reliable**!

Possibilities to accelerate ageing tests:

increased **gas gain** and **irradiation rate**

to study dependence on

- **Irradiation length**
- High-Voltage
- **Irradiation Rate**
- **Primary Ionisation**

Can we conclude anything from the collected total charge [mC/cm]

Experimental discrepancies

using Ar-CH₄-N₂-CO₂

Setup	Freiburg 1998	CERN X5-GIF 1998
	No ageing up to 3000 mC/cm	All (48) tubes inefficient
		after 80 mC/cm
Tube cleanliness	higher	lower
HV	3350 Volt	3400 Volt
Irradiation zone	2.5 cm	340 cm
Irradiation rate	0.5 – 13kHz/cm	1.8 kHz/cm
Gas flow/ Volume	2 – 240 hours	2,5 hours
exchange time		
Gas system	all parallel	each 3 serial
Photon energy	14, 18 and 60 keV	660 keV

Cathode cleanliness and gas flow alone could not explain the different results

Michael Kollefrath, University of Freiburg

Freiburg "Ageing Setup"

•1995 Start of ageing tests
•Active zone (irradiation zone)
1.5 to 8 cm
•Total length of

the tube: 30cm

4 different irradiation rates (4 distances)
5 Setups \$\sqrt{80}\$ individual tubes

Example of an inefficient Tube

Michael Kollefrath, University of Freiburg

Ageing dependence on High Voltage

Lifetime = Total Charge/Length up to 70%-Level of pulse height Equal Colors = identical parameters **except Voltage**

Strong HV-Dependence of Lifetime

03.10.2001

Michael Kollefrath, University of Freiburg

Lifetime = Total Charge/Length up to 70%-Level of pulse height Equal Colors = identical parameters except **irradiation rate**

Strong rate-dependence of Lifetime

Ageing dependence on irradiation zone

Lifetime = Total Charge/Length up to 70%-Level of pulse height Equal Colors = identical parameters except **irradiation zone**

Strong length of irradiation zone dependence of Lifetime

Dependences of lifetime in $Ar-CH_4-N_2-CO_2$

Strong **dependence** of the lifetime on **HV**, **irradiation rate** and **irradiation zone**

Extrapolation to Atlas-Operating Point (600cm, 300Hz/cm, 3130V) not possible

"safe ageing test": full length, higher rate & HV

 \Box X5

Is this behaviour independent ? from gas-mixture

Interpretation of the ageing dependences

Irradiation in gas mixtures with hydro-carbons can produce ageing Polymerisation on the wire reduces the gas gain (experimental result)

Does ageing depend on chemical concentration?

(That is up to now an unchecked idea)

Chemical concentration increases:

•with higher HV

•along direction of gas flow

•with higher irradiation rate •with longer irradiation zone

•in serial gas systems with position in the series

Dependence of lifetime in Ar-CO₂ 93-7

However

Drift tubes in a safe gas like $Ar-CO_2$ can age if there are small quantities of impurities in the tube

We have seen ageing in $Ar-CO_2$, when the tube is sealed with Araldit

(Contact surface << 1mm²)

(Araldit AW106, HV 953)

Conclusion

•Ageing has a strong dependence on **HV**, irradiation rate and length of irradiation zone •To make an usefull ageing test, you have to study the dependence on these parameters a safe test in Ar-CH₄-N₂-CO₂: full length, higher rate and higher HV

•A safe gas for the Atlas Muon Drift tubes is $Ar-CO_2$ 93-7