

Aging Measurements with the Gas Electron Multiplier (GEM)

International Workshop on Aging Phenomena in Gaseous Detectors DESY Hamburg - October 2-5, 2001

Investigation of a $31x31cm^2$ Triple-GEM Detector operated in Ar:CO₂ (70:30)

M.C. Altunbas³, K. Dehmelt⁴, **S. Kappler^{1,2*}**, B. Ketzer¹, L. Ropelewski¹, and F. Sauli¹

¹ CERN, EP Division, Geneva (Switzerland)
 ² Inst. f. Exp.. Kernphysik, Karlsruhe University (Germany)
 ³ State University of New York, Buffalo (U.S.A.)
 ⁴ Inst. f. Kernphysik, Mainz University (Germany)

The Gas Electron Multiplier as a Charge Amplification Stage

The **GEM** foil

- + Kapton foil of 50 m, two-side copper-clad (5 m each)
- + Perforated with a high density of holes (etched in a photolithographic process)
- + Typically p=140 m, D=70 m, d=60 m

The GEM Principle:

- + High voltage on electrodes (0.3-0.5kV)
- + Fieldlines from the volume above the GEM are strongly compressed into the holes:
 - -> High fields inside the holes
 -> Proportional Gas Amplification
- + A big part of the fieldlines are decompressed into the volume below the GEM,

-> High electric transparency
 -> Effective gains up to 10³

Electron drift lines through a GEM

Principle:

+ Parallel electrode gas detector with one or more GEMs inserted

Features:

- + Adaptable eff. gain (# of GEMs, GEM-voltage)
- Separation of gas amplification and readout stage allows high flexibility in the readout design
- + 2D readout easily realizable

Previous Aging Measurements with a Double-GEM Detector

Former Studies:

- + Double-GEM detector, standard GEMs & PCB readout
- + Detector operated with
 - Ar:CO₂ (70:30)
 - Effective gain $G = (2.2 \pm 0.4)^{10^{3}}$
 - $E_D = 2.0 kV/cm$,
 - $E_T = E_I = 4kV/cm$
 - GEM voltage: 410/410V
- + 6keVX-ray tube, 2cm² irradiated
- + SWPC for reference, installed in the same gas line

Triple-GEM detectors for COMPASS

Final Design:

- +Triple-GEM detector - Minimization of probability and energy in spark discharges
- + GEM-foils segmented into 12 sectors plus central disk
- + 2D Readout, 2x768 strips 400 m pitch, 70 & 350 m width
- + Active area 31x31cm²
- + Gaps: 3/2/2/2mm
- + Total thickness 15mm
- + Rigid support with *Nomex* honeycomb and *Vetronite* skin

Detector Components Overview of the Materials used

Material	Details	Supplied or	
		manufactured by	
Assembly Glue	ARALDIT AY103 + HD991 (ratio 10:4)	CERN store	i 🔦
Frame & grid		Nuvovern LW	
spacer conditioning	Polyurethane (2 component)	Walter Mader AG	
		CH-8956 Killwangen	0
е		Nomex:	
	Sandwich Stesalit (125 μ m)-	Socol	
Sandwich structure		24 Rue du Lac,	
	Honeycomb Nomex (3mm)-	CH-1020 Renens	
(external)		Stesalit:	🕇 📉
	Stesalit (125 μ m)	Stesalit AG,	
		CH-4234 ZULLWIL SO	🕛 <>
Shielding 🕑	Aluminium (10 μ m)	GDD	<u> </u>
	50 μ m thick Kapton,		<u> </u>
GEM foils (50 μ m)	5μ m Cu,	CERN/EST	at
	70 μ m hole diam., 140 μ m pitch		
Drift	5μ m Cu on 50μ m Kapton	CERN/EST	
Frame	3mm thick Stesalit	CERN/EP/TA1	
Spacers	Vetronite grids 2mm thick	CERN/EST	
		Angst-Pfister	
Gas pipes	PP tube (3mm diam.)	Thurgauer Str. 66	
		CH-8052 Zürich	
Gas outlet	$F ext{-glass} + fitting$	CERN/EP/TA1	
РСВ	Active area $30.7 \times 30.7 \text{ cm}^2$,		
	2-dim. 2x 768 strips, 400 μ m pitch	CERN/EST	
HV boards 🛛 🥑	Custom made	CERN/EST	

Aging Setup:

- + 8.9keV X-ray tube, 38.5cm distance to the detector
- +¹/₄ of the detector (*15*x*15cm*²) irradiated with a Gaussian X-ray beam profile
- + Detector operated with
 - Ar:CO₂ (70:30)
 - Effective gain of $G = (8.5 \pm 1.3)^{10^{3}}$ during the irradiation phases, thus:
 - $E_D = 2.5 kV/cm$, $E_{T1} = E_{T2} = E_I = 3.7 kV/cm$
 - GEM voltage: 425/380/340V
- + SWPC for reference, installed in the same gas line

- + Open Gas System:
 - Premixed gas bottle Ar:CO₂ (70:30)
 - Mass flow control *80+0.5 ccm/min*
 - Exhaust gas line of ~10m
- + HV Supply:
 - CAEN high voltage supply with current limit
 - Resistive voltage divider

10 mexhaust gas line

with current limit

detector

+ Measurement cycle:

Irradiation Phases, X-Ray Beam Profile Cu-Anode, 8.9keV X-rays

Irradiation in 2 phases:

+ Gaussian beam profile with

Measurement Results:

- + Temperature (accuracy <u>+</u>1°)
- + Relative humidity (accuracy <u>+</u>3%) (outside the detector)

+ Ambient atm. pressure (accuracy <u>+0.5%</u>) (outside the detector)

+ Gas Line:

- Gas flow: (80<u>+</u>0.5) ccm/min
- H₂O content: (60+2) ppm (crucial importance for discharge probability)

Convention:

We give the quantity dQ/dA as the charge accumulated in the region of the 1 -line of the beam profile.

***** = gas bottle exchanged

Energy Resolution:

 $E_{fwhm}/8.9 keV$

Please notice:

The improvement of the energy resolution at beginning of the high rate phase is due to the increased GEM voltage, resulting in a higher S/N during the recording phase of the spectra.

Results Final Scan: X-ray spectra of 9 Points in the irradiated region

Summary & Discussion of Results

+ Test of a large-size honeycomb triple-GEM detector (31x31cm²)

- + Production model with a less optimal choice of materials (epoxies, sealants, etc.)
- + Operated in Ar:CO₂ (70:30)
- + Effective gain of $G_{eff} = 8500$

- + Aging Measurement performed with an 8.9keV X-ray beam on $\frac{1}{4}$ of the detector area in 2x10 days
- + More than 7mC/mm² or 1.7 ¹⁰ MIPs/mm² collected (corresponding to more than 5 yrs. *COMPASS*)

No Loss of Gain or Energy Resolution observed!

- + Gas mixture with good aging properties: Ar:CO₂
- + Smaller sensitivity of the GEM to aging due to:
 - Absence of thin anodes
 - Gas amplification is localized inside the holes, rather far from signal electrodes and walls
 - Field shape and strength only little affected by possible polymerisation deposits

12 of 20 detectors already installed and successfully operated in the *COMPASS* experiment...

