

AGING OF LARGE AREA CsI PHOTOCATHODES FOR THE ALICE HMPID DETECTOR

A. Di Mauro (CERN, Geneva) on behalf of the ALICE-HMPID group

THE HMPID DETECTOR

30

90 15 10

5 10 15

20

x (pade)

Operating principle

Radiator: 15 mm C₆F₁₄ – n=1.3 @ 170 nm

Photon detector: • MWPC with CH₄ at atmospheric pressure (4 mm sensitive gap)

analogue pad readout

Photon converter: Reflective layer of CsI (QE= 23% @ 170 nm)

PID range:

• 2 < p < 5 GeV/c p

THE HMPID PROTO-2

CHERENKOV EVENTS AT SPS

CHERENKOV EVENTS AT STAR

STAR-RICH Event Display

THE CERN/RD26 PROJECT

 In 1993-1997: 32 CsI PC's produced, area from 20x10 to 64x40 cm²

 Definition of a procedure to prepare large area CsI PC's with reproducible high QE + handling/ under clean conditions

THE PC'S UNDER STUDY

PC id #	Pad plane area	Date of evaporation
PC19	29x32 cm ²	29/11/1994
PC24	29x32 cm ²	6/12/1995
PC29	64x40 cm ²	2/6/1997
PC30	64x40 cm ²	24/6/1997
PC31	64x40 cm ²	16/7/1997
PC32	64x40 cm ²	30/7/1997

MAIN DEPOSITION PARAMETERS

Substrate type	copper-clad PCB + 7 μm Ni + 0.05-0.1 μm Au
Pressure before deposition	2 x 10 ⁻⁶ Torr
Temperature during deposition	50 °C
Deposition rate	2 nm/sec
CsI thickness	300 nm
Final treatment temperature/time	50 °C / 8 h

(since 2000, RGA before and after CsI deposition)

AGING SOURCES

CsI PC's performance periodically evaluated in beam tests of RICH

EXPOSURE TO O₂ AND H₂0

- PC storage under Ar flow: O_2 and H_2O at < 10 ppm
- At each test-beam:
 - 1. Mounting/dismounting in glove-box: ~1 h, O_2 at 400 ppm and H_2O at <100 ppm
 - 2. Measured at chamber gas exhaust: O_2 at 20 ppm and H_2O at 10 ppm
- Controlled exposures, with and without gas flow: 6-18 h, O_2 up to 100000 ppm and H_2O up to ~50 ppm (\implies slide on shipment to BNL)
- Exposure to air: 10' at ~ 40% relative humidity

THE SHIPMENT TO BNL

- In the summer of 1999 proto-2 was disassembled and shipped by plane to BNL to be installed in the STAR experiment. The 4 PC's have been put inside sealed vessels pressurized with Ar at 1.2 bar (18 h).
- The solution was adopted after exposure tests to O₂ and H₂O:
 a) produced by the outgassing inside a sealed detector or container;
 b) under gas flow (Ar/dry air mixture).
 (Nucl. Instr. & Meth. A 461(2001), 584-586)

O₂ AND H₂O LEVELS IN SEALED VESSEL

No photoemission degradation has been observed after the test

ION IMPACT

- Local beam irradiation up to 2x10⁴ cm⁻² s⁻¹, stable behaviour @ gain of 10⁵
- PC19, PC24
 Beam in fixed positions: inside the Cherenkov fiducial area (~200 cm²), accumulated charge (from single photoelectron avalanches) 2-10 µC/cm² at each TB period
- Proto-2 (PC29 to PC32)
 - 1. Beam in fixed positions
 - 2. π ⁻ -Be events: 10-50 μ C/cm²
 - 3. STAR physics runs: 10 $\mu C/cm^2$

(EXPECTED IN ALICE: charge rate 5×10^{-11} C cm⁻² s⁻¹, charge density integrated over a year Pb run 50 μ C/cm²)

PHOTON I MPACT

Largest rate with beam in fixed positions: inside Cherenkov fiducial area,
 ~ 2 x 10⁴ photons cm⁻² s⁻¹

IT CAN BE NEGLECTED FOR OUR APPLICATION

QE EXTRACTION FROM TB DATA

- Definition of a Cherenkov fiducial area, according to detector geometry and beam momentum
- Pad clusters analysis and deconvolution, needed because of large fraction of cluster overlap
- Distributions of main quantities: multiplicity and size of pad clusters, single electron pulse height,
- Monte Carlo simulation: "tuning" of QE curve in order to reproduce experimental results, all processes taken into account
- -ALICE HMPID Technical Design Report, CERN/LHCC 98-19
- Nucl. Instr. and Meth. A 433(1999), 190-200

SOME TYPICAL DISTRIBUTIONS

... AND THE SIMULATION RESULTS

(full symbols: measurements; empty symbols: simulation)

PC19 DI FFERENTI AL QE

QE HI STORY OF PC29-PC32

With the exception of PC24, the examined PC's have been found quite stable at the considered accumulated charge densities, when the exposure to O₂ and H₂O is limited to the ppm level.

As expected, a QE degradation (20%) has been observed after short exposures to air (humidity).

The effect of the exposure to O₂ amounts > 1000 ppm is not quite clear and is a subject for further investigations.