Short RPC review

1. BELLE RPCs:
 - STREAMER MODE + PLASMA + FREON \rightarrow HF
 \rightarrow GLASS CORROSION
 - FIX: REDUCE H_2O 2000 ppm \rightarrow <10 ppm

2. BaBar RPCs:
 - STREAMER MODE
 - BUTTON DESIGN TRAPS OIL:
 - L_3:
 - $35^\circ C$ \rightarrow RELEASE OF OIL

 \Rightarrow OVERVOLTAGE

 \Rightarrow INCREASED RATE OF CHEMISTRY
• Linseed oil has low resistivity if fresh (loaded with water) → creates large currents → "shorts" the gap

• If one runs voltage on fresh linseed oil, on creates stalagnites

→ emission points

• All other materials seems to be insensitive to temperature

• Is there something more?

- Electrolytic effects:
 Water modulates resistivity of linseed oil.
- Electrolytic process in Linseed oil

Linseed oil: "It is a mixture of the glycerides of linolenic, linoleic, oleic, stearic, and palmitic acids with high degree of unsaturation of its fatty acid radicals." It is pressed from seeds.

Potential trouble with the Linseed oil:
1) A current in “Fatty acids” is modulated by a presence of water. (Organic Fatty acids have a form: R-COOH)
2) Unsaturated bonds may cause a lower resistivity.

1) **If there is no water** then R-COO\(^-\) just shares a charge:
 => **The current slowly decays** as R-COOH is consumed.

2) **If there is water** then R-COO\(^-\) will share a charge and convert back to the fatty acid R-COOH.
 => **The current will continue.**

Note:
- **Bakelite:** "It is the phenol-formaldehyde polymer."
- **Current is also carried via ions:** Phenol impurities => \(\text{H}^+ + \text{Ion}^- \)
Indeed that is what is observed:

Experimental evidence that the current through the Linseed oil decays if we do not add water:

- Adding water sharply increases the current (similar result obtained by Ch. Lu, Princeton).
- Reversal of the voltage does not return the current to the original high value !!
- There is an evidence of an accumulation of some substance on the surface of the Linseed oil (probably related to R-COO).
Model of BaBar RPC problems:

a) **Too much water**, in some chamber, which is distributed non-uniformly throughout the edges and supports.
b) **Not enough water**, in some chambers, which will stop the charge transfer through the Linseed oil film layer, and this will cause a charging up effects. The Linseed oil will become some sort of shutter, which prevents a flow of charge.
c) ** Unsaturated bonds**, i.e. non-polymerized Linseed oil, which makes it less resistive. This effect is non-uniform throughout the chamber due to a non-uniform distribution of the Linseed oil. Adding oxygen will help to polymeryze the Linseed oil which would increase its resistivity.

Note: None of this is proven in the real BaBar chambers yet !!
G. AIELLI - IMPORTANCE TO TEST INDIVIDUAL COMPONENTS

G. PUGLIESE - IMPORTANCE TO TEST USING J & M RADIATION SOURCES.

(FABIO) - A NEW OIL?

- IT IS IMPORTANT TO DO THE TESTS WITH VERY LARGE SYSTEM
- BAKELITE RESISTIVITY SUDDEN INCREASE.