Classical Aging - Short Summary - Part 2-

General Comment(s):

• New: Aging issues now become relevant for Muon detectors

Specifics:

• expected accumulated doses per year

- 200 mC/cm HERA-B

- 50-60 mC/cm ATLAS, LHCb

- 8-10 mC/cm CMS

- 12-60 mC/cm COMPASS (depends on gain used)

- lessons (I)
 - aging rate depends on (ATLAS, HERA-B)
 - collected charge
 - area of irradiation
 - mode of operation (high vs. low irradiation rate)
 - laboratory tests may not be enough!

Classical Aging - Short Summary - Part 2-

- lessons (II)
 - Ar-CF₄- CO₂ based mixtures can be safe exceeding 13,000 mC/cm (ATLAS)
 - Ar-CO₂ (30:70) mixture shows strong aging already after 250 mC/cm (CMS)
 - Ar-CO₂ (93:7) mixture o.k. up to 600 mC/cm (ATLAS)
 - anode aging (gain loss) and Malter effect after 100 mC/cm for Ar-CH₄ (COMPASS)

- lessons (III)
 - aging depends on many more things than collected charge
 - extrapolation test setup \rightarrow real device tricky!
 - \Rightarrow Try to cover as much of parameter space as possible with tests, tests!